已知實(shí)數(shù)x,y滿(mǎn)足
x+y≥1
x-y≤1
0≤y≤2
則z=2x-y
的最大值是
 
考點(diǎn):簡(jiǎn)單線(xiàn)性規(guī)劃
專(zhuān)題:計(jì)算題
分析:先作出不等式組對(duì)應(yīng)的區(qū)域,由圖形判斷出最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算出最大值即可.
解答: 解:由題意,作出
x+y≥1
x-y≤1
0≤y≤2
對(duì)應(yīng)的區(qū)域,如圖的陰影部分
由圖形判斷出目標(biāo)函數(shù)在z=2x-y在點(diǎn)(3,2)出取得最大值,最大值為2×3-2=4
故答案為4
點(diǎn)評(píng):本題考查簡(jiǎn)單線(xiàn)性規(guī)劃,解題的重點(diǎn)是作出正確的約束條件對(duì)應(yīng)的區(qū)域,根據(jù)目標(biāo)函數(shù)的形式及圖象作出正確判斷找出最優(yōu)解,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=0.32,b=log20.3,c=20.3,則a,b,c的大小關(guān)系(由小到大是)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)A(1,1)與曲線(xiàn)C:y=x3相切的直線(xiàn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直二面角E-AB-C中,四邊形ABCD和四邊形ABEF都是矩形,AB=AF=4,AD=2,點(diǎn)P、Q、G分別是AC、BC、AF的中點(diǎn);
(Ⅰ)求FB與PG所成角的正切值:
(Ⅱ)求二面角G-PQ-A,的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
cos(π-2α)
sin(α-
π
4
)
=-
2
2
,則cosα+sinα等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊為a,b,c,已知已知 
cosA
cosB
=
b
a
,且∠C=
3

(1)求角A,B的大小;
(2)設(shè)函數(shù)f(x)=sin(2x+A)+cos(2x-
C
2
)
,求函數(shù)f(x)在[-
π
8
,
π
4
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)tan
θ
2
=t

(1)求證:
1+sinθ
1+sinθ+cosθ
=
1
2
(t+1)

(2)當(dāng)tan(
π
2
+2θ)=
3
4
時(shí),利用以上結(jié)果求
1-sin4θ
1-sin4θ-cos4θ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)(x∈N)表示x除以3的余數(shù),對(duì)?x,y∈N,則函數(shù)的周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(α-
π
4
)+cos(α+
π
4
)
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案