13.已知函數(shù)f(x)=$\frac{-2}{x-1}$.
(1)求證:f(x)在[2,3]上是增函數(shù);
(2)求f(x)在[2,3]上的最大值和最小值.

分析 (1)由單調(diào)性的定義,由設(shè)自變量、作差、變形和定符號(hào)、下結(jié)論,即可得證;
(2)運(yùn)用函數(shù)的單調(diào)性,計(jì)算即可得到最值.

解答 (1)證明:設(shè)2≤x1<x2≤3,
f(x1)-f(x2)=$\frac{-2}{{x}_{1}-1}$-$\frac{-2}{{x}_{2}-1}$=$\frac{-2({x}_{2}-{x}_{1})}{({x}_{1}-1)({x}_{2}-1)}$,
由2≤x1<x2≤3,可得(x1-1)(x2-1)>0,
x2-x1>0,
則f(x1)-f(x2)<0,即為f(x1)<f(x2),
故f(x)在[2,3]上是增函數(shù);
(2)解:由(1)可得,f(2)是最小值,且為-2;
f(3)是最大值,且為-1.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的證明,注意運(yùn)用定義,同時(shí)考查單調(diào)性的應(yīng)用:求最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若平面α的斜線l在α上的射影為l′,直線b∥α且b⊥l′,則b與l( 。
A.必相交B.必為異面直線C.垂直D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{2-x}{x+1}$,證明:函數(shù)f(x)在 (-1,+∞)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=|xlnx|.方程f2(x)-(2+e)f(x)+2e=0的實(shí)根個(gè)數(shù)為( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)已知f(x+$\frac{1}{x}$)=x3+$\frac{1}{{x}^{3}}$,求f(x)的表達(dá)式;
(2)給出函數(shù)y=x+$\frac{a}{x}$(a>0)的單調(diào)性;在(-∞,-$\sqrt{a}$],[$\sqrt{a}$,+∞)上單調(diào)遞增,在[(-$\sqrt{a}$,0),(0,$\sqrt{a}$)]上單調(diào)遞減,利用這一結(jié)論,求第(2)問(wèn)中所得f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如果對(duì)任意實(shí)數(shù)x,y∈R都有f(x+y)=f(x)•f(y)且f(1)=2.
(1)求f(2),f(3),f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.關(guān)于x的不等式$\frac{(x-8)^{2}(x+1)}{5-x}$≥0的解集為[-1,5)∪{8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)集合M={1,2,3,4,5,6},S1、S2、…、Sk都是M的含兩個(gè)元素的子集,且滿足:對(duì)任意的Si={ai,bi},Sj={aj,bj}(i≠j,i、j∈{1,2,3,…,k}),都有min$\{\frac{a_i}{b_i},\frac{b_i}{a_i}\}$≠min$\{\frac{a_j}{b_j},\frac{b_j}{a_j}\}$(min{x,y}表示兩個(gè)數(shù)x、y中的較小者).則k的最小值是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在數(shù)列{an}中,前n項(xiàng)和為Sn=2n2-17n.
(1)求an;
(2)Sn取最小值時(shí),求n.(用三種方法求an,an=Sn-Sn-1,Sn=$\frac{n{(a}_{1}{+a}_{n})}{2}$,特殊值法)

查看答案和解析>>

同步練習(xí)冊(cè)答案