【題目】已知函數(shù) (a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.
【答案】
(1)解:定義域?yàn)椋ī仭蓿?)∪(0,+∞)
(2)解: = = ,
∴f(x)是偶函數(shù)
(3)解:∵函數(shù)f(x)在定義域上是偶函數(shù),
∴函數(shù)y=f(2x)在定義域上也是偶函數(shù),
∴當(dāng)x∈(0,+∞)時(shí),f(x)+f(2x)>0可滿(mǎn)足題意,
∵當(dāng)x∈(0,+∞)時(shí),x3>0,
∴只需 ,即 ,
∵a2x+ax+1>0,
∴(ax)2﹣1>0,解得a>1,
∴當(dāng)a>1時(shí),f(x)+f(2x)>0在定義域上恒成立
【解析】(1)利用ax﹣1≠0即可求得函數(shù)f(x)的定義域;(2)由 可推知f(﹣x)=f(x),從而可判斷函數(shù)f(x)的奇偶性;(3)利用(1)知f(x)為偶函數(shù),可知當(dāng)x∈(0,+∞)時(shí),x3>0,從而可判知,要使f(x)+f(2x)>0在其定義域上恒成立,只需當(dāng)a>1時(shí)即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較,以及對(duì)函數(shù)的奇偶性的理解,了解偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)畫(huà)出這個(gè)函數(shù)的圖象;
(2)指出函數(shù)f(x)的單調(diào)區(qū)間,并說(shuō)明在各個(gè)單調(diào)區(qū)間上f(x)是增函數(shù)還是減函數(shù);
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列是全稱(chēng)命題并且是真命題的是( )
A.?x∈R,x2>0
B.?x,y∈R,x2+y2>0
C.?x∈Q,x2∈Q
D.?x0∈Z,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】荊州市某重點(diǎn)學(xué)校為了了解高一年級(jí)學(xué)生周末雙休日在家活動(dòng)情況,打算從高一年級(jí)1256名學(xué)生中抽取50名進(jìn)行抽查,若采用下面的方法選取:先用簡(jiǎn)單隨機(jī)抽樣從1256人中剔除6人,剩下1250人再按系統(tǒng)抽樣的方法進(jìn)行,則每人入選的機(jī)會(huì)( )
A.不全相等
B.均不相等
C.都相等
D.無(wú)法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家.某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸).將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)估計(jì)居民月均水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017北京西城區(qū)5月模擬】已知函數(shù),其中.
(Ⅰ)求函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅱ)證明:是函數(shù)存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),離心率 ,且其中一個(gè)焦點(diǎn)與拋物線(xiàn) 的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)S( ,0)的動(dòng)直線(xiàn)l交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無(wú)論l如何轉(zhuǎn)動(dòng),以AB為直徑的圓恒過(guò)點(diǎn)T,若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【蘇北三市(連云港、徐州、宿遷)2017屆高三年級(jí)第三次調(diào)研考試】某景區(qū)修建一棟復(fù)古建筑,其窗戶(hù)設(shè)計(jì)如圖所示.圓的圓心與矩形對(duì)角線(xiàn)的交點(diǎn)重合,且圓與矩形上下兩邊相切(為上切點(diǎn)),與左右兩邊相交(,為其中兩個(gè)交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1,且,設(shè),透光區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;
(2)根據(jù)設(shè)計(jì)要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時(shí),求邊的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com