考點(diǎn):兩角和與差的正弦函數(shù),數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專(zhuān)題:三角函數(shù)的求值
分析:(Ⅰ)由垂直可得數(shù)量積為0,可得sin(x+
)=
,由誘導(dǎo)公式可得;
(Ⅱ)由已知化簡(jiǎn)可得sin(α+
)的值,結(jié)合角的范圍和同角三角函數(shù)的基本關(guān)系可得cos(α+
)的值,而cosα=cos[(α+
)-
]=
cos(α+
)+
sin(α+
),代入化簡(jiǎn)可得.
解答:
解:(Ⅰ)∵
⊥
,∴
•
=0,
∴
•
=4sin(x+
)+4cosx-
=2
sinx+6cosx-
=4
sin(x+
)-
=0,
∴sin(x+
)=
,
∴sin(x+
)=-sin(x+
)=-
,
(Ⅱ)∵f(x)=
•
=4
sin(x+
)-
,
∴f(α-
)=4
sin(α+
)-
=2
,
∴sin(α+
)=
,又α∈[0,
],
∴α+
∈[
,
],又
<
<
,
∴α+
∈[
,
],∴cos(α+
)=
,
∴cosα=cos[(α+
)-
]=
cos(α+
)+
sin(α+
)
=
×+×=
點(diǎn)評(píng):本題考查兩角和與差的三角函數(shù)公式,涉及向量的垂直和三角函數(shù)的取值范圍,屬中檔題.