【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當(dāng)a=1時,求f(x)≤3的解集;
(2)當(dāng)x∈[1,2]時,f(x)≤3恒成立,求實數(shù)a的取值范圍.
【答案】(1);(2).
【解析】
(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解,最后求并集;(2)根據(jù)x∈[1,2]得|2x-1|=2x-1,再去絕對值分離變量,最后根據(jù)函數(shù)最值得實數(shù)a的取值范圍.
(1)當(dāng)a=1時,由f(x)≤3,可得|2x-1|+|x-2|≤3,
∴①或②或③
解①得0≤x<,解②得≤x<2,解③得x=2.
綜上可得,0≤x≤2,即不等式的解集為[0,2].
(2)∵當(dāng)x∈[1,2]時,f(x)≤3恒成立,
即|x-2a|≤3-|2x-1|=4-2x,
故2x-4≤2a-x≤4-2x,
即3x-4≤2a≤4-x.
再根據(jù)3x-4在x∈[1,2]上的最大值為6-4=2,4-x的最小值為4-2=2,
∴2a=2,∴a=1,
即a的取值范圍為{1}.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),若存在距離為的兩條直線和,使得對任意都有恒成立,則稱函數(shù)有一個寬度為的通道.給出下列函數(shù):
①; ②; ③; ④.
其中在區(qū)間上有一個通道寬度為的函數(shù)是__________(寫出所有正確的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個極值點和,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解七班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為,求的分布列與期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05[ | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.70 | 3.841 | 5.024 | 6.635 | 7.879 | 10.82 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)統(tǒng)計,某市騎行過共享單車的人數(shù)約占全市的80%,為確定單車的投放數(shù)量以及對同年齡的車型配比,需要對該市市民每月騎行單車的次數(shù)進(jìn)行統(tǒng)計,如表所示是對該市隨機(jī)抽取100位市民的調(diào)查結(jié)果,每月騎行次數(shù)不超過20次稱“不經(jīng)常騎行”,超過20次稱“經(jīng)常騎行”.
經(jīng)常騎行 | 不經(jīng)常騎行 | 合計 | |
年齡不低于40歲 | 15 | 25 | 40 |
年齡低于40歲 | 35 | 25 | 60 |
合計 | 50 | 50 | 100 |
(1)是否有95%的把握認(rèn)為騎行單車次數(shù)與年齡有關(guān)?
(2)以樣本的頻率為概率
①現(xiàn)從該市市民中隨機(jī)抽取1人,求該人為“經(jīng)常騎行”的概率
②已知該市人口約為600萬,忽略把經(jīng)常騎行人數(shù)的騎行次數(shù),統(tǒng)計得經(jīng)常騎行人群每人每月騎行次數(shù)的平均值為45次(每月按30天計算),若每輛單車每天被騎行(15次左右,可達(dá)到既緩解交通壓力又減少了胡亂放置的目的,則該市配置單車的數(shù)量應(yīng)為多少?
附參考公式及數(shù)據(jù)
| 0.10 | 0.050 | 0.010 |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形中,、分別是、上的點,,,,是的中點,現(xiàn)沿著翻折,使平面平面.
(1)為的中點,求證:平面.
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個平面垂直,下列命題中錯誤的是( 。
A.兩個平面內(nèi)分別垂直于交線的兩條直線相互垂直
B.一個平面內(nèi)的任一條直線必垂直于另一個平面.
C.一個平面內(nèi)存在直線垂直于另一個平面
D.一個平面內(nèi)的任意一條直線都垂直于另一個平面內(nèi)的無數(shù)條直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.
(1)求橢圓的方程;
(2)經(jīng)過點作直線,交橢圓于,兩點.如果恰好是線段的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·湖南)如下圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com