【題目】某市初三畢業(yè)生參加中考要進(jìn)行體育測(cè)試,某實(shí)驗(yàn)中學(xué)初三(8)班的一次體育測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的涂黑,但可見部分如圖,據(jù)此解答如下問題.

(Ⅰ)求全班人數(shù)及中位數(shù),并重新畫出頻率直方圖;
(Ⅱ)若要從分?jǐn)?shù)在 之間的成績(jī)中任取兩個(gè)學(xué)生成績(jī)分析學(xué)生得分情況,在抽取的學(xué)生中,求至少有一個(gè)分?jǐn)?shù)在 之間的概率.

【答案】解:(Ⅰ)由莖葉圖知,分?jǐn)?shù)在 之間的頻數(shù)為2,頻率為 ,
全班人數(shù)為
由莖葉圖知,25個(gè)數(shù)從小到大排序第13個(gè)數(shù)是73,所以中位數(shù)是73,
故答案為:中位數(shù)是73
頻率分布直方圖如圖所示.

(Ⅱ)將 之間的4個(gè)分?jǐn)?shù)編號(hào)為1,2,3,4, 之間的2個(gè)分?jǐn)?shù)編號(hào)為N , M , 在 , 之間的學(xué)生成績(jī)中任取兩個(gè)分?jǐn)?shù)的基本事件為: ; ; ; ,共15個(gè),
其中,至少有一個(gè)分?jǐn)?shù)在 之間的基本事件:
,有9個(gè),故至少有一個(gè)分?jǐn)?shù)在 之間的概率是
故答案為:0.6
【解析】(1)由頻率求出樣本容量為25,則中位數(shù)是由小到大的第13個(gè),從而可以補(bǔ)全直方圖.
(2)古典概型中先列出基本事件,找出合符條件的個(gè)數(shù),由公式求概率.
【考點(diǎn)精析】掌握頻率分布直方圖和莖葉圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20 , 接下來的兩項(xiàng)是20 , 21 , 再接下來的三項(xiàng)是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是(  )
A.440
B.330
C.220
D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線 分別與直線 ,曲線 交于點(diǎn) ,則 的最小值為( )
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 的右頂點(diǎn)為 ,左、右焦點(diǎn)分別為 ,過點(diǎn) 且斜率為 的直線與 軸交于點(diǎn) ,與橢圓交于另一個(gè)點(diǎn) ,且點(diǎn) 軸上的射影恰好為點(diǎn)

(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)過點(diǎn) 的直線與橢圓交于 兩點(diǎn)( 不與 重合),若 ,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x-4+ ,x∈(0,4),當(dāng)x=a時(shí),f(x)取得最小值b,則函數(shù)g(x)=a|x+b|的圖象為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中, 是兩條不同的直線, 是兩個(gè)不同的平面,則下列命題中的真命題是( )
A.若 ,則
B.若 , , ,則
C.若 ,則
D.若 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(Ⅰ)當(dāng) 時(shí),求不等式 的解集;
(Ⅱ)若 的解集包含 ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,以 為極點(diǎn), 軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線 的極坐標(biāo)方程為 ,直線 的參數(shù)方程為: 為參數(shù)),兩曲線相交于 兩點(diǎn).
(1)寫出曲線 的直角坐標(biāo)方程和直線 的普通方程;
(2)若 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小正周期是 ,若將其圖象向右平移 個(gè)單位后得到的圖象關(guān)于 軸對(duì)稱,則函數(shù) 的圖象( )
A.關(guān)于直線 對(duì)稱
B.關(guān)于直線 對(duì)稱
C.關(guān)于點(diǎn) 對(duì)稱
D.關(guān)于點(diǎn) 對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案