從1,2,3…20這20個數(shù)中任取2個不同的數(shù),則這兩個數(shù)之和是3的倍數(shù)的概率為( 。
A、
32
95
B、
3
38
C、
1
19
D、
57
190
考點:等可能事件的概率
專題:概率與統(tǒng)計
分析:所有的取法共有
C
2
20
=190,而滿足條件的取法共有
C
2
6
+7×7=64,由此求得所求事件的概率.
解答: 解:所有的取法共有
C
2
20
=190,
1,2,3…20這20個數(shù)中,有6個是3的倍數(shù),被3除余1的有7個,被3除余2的有7個,
取出的這兩個數(shù)的和是3的倍數(shù),包括兩類:①這兩個數(shù)都是3的倍數(shù);
②這兩個數(shù)中,一個被3除余1,另一個被3除余2.
故滿足條件的取法共有
C
2
6
+7×7=64,
故要求事件的概率為 P=
64
190
=
32
95
,
故選:A.
點評:本題主要考查等可能事件的概率,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對任意正整數(shù)n,定義n的雙階乘n!!如下:
當(dāng)n為偶數(shù)時,n!!=n(n-2)(n-4)…6•4•2;當(dāng)n為奇數(shù)時,n!!=n(n-2)(n-4)…5•3•1.現(xiàn)有四個命題:
①(2014!!)(2013!!)=2014!;
②2014!!=2•1007!;
③2014!!個位數(shù)為0; 
④2013!!個位數(shù)為5.
其中正確命題的序號有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公務(wù)員考試分筆試和面試,筆試的通過率為20%,最后的錄取率為4%,已知某人已經(jīng)通過筆試,則他最后被錄取的概率為( 。
A、20%B、24%
C、16%D、4%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)f(x)=
1
|x-3|
2,x=3
x≠3
 
,若關(guān)于x的方程f2(x)-af(x)+b=0有3個不同實數(shù)解x1,x2,x3,且x1<x2<x3,則下列說法錯誤的是(  )
A、5+b-2a=1
B、b<0
C、x1-x2+x3=3
D、x12+x22+x32=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的莖葉圖記錄了一組數(shù)據(jù),關(guān)于這組數(shù)據(jù)給出了如下四個結(jié)論:①眾數(shù)是9;②平均數(shù)10;③中位數(shù)是9或10;④方差是3.4,其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于R上可導(dǎo)的任意函數(shù)f(x),若滿足
2-x
f′(x)
≤0
,則必有( 。
A、f(1)+f(3)<2f(2)
B、f(1)+f(3)≤2f(2)
C、f(1)+f(3)>2f(2)
D、f(1)+f(3)≥2f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

M是拋物線y2=4x上一點,且在x軸上方,F(xiàn)是拋物線的焦點,以x軸的正半軸為始邊,F(xiàn)M為終邊構(gòu)成的角為∠xFM=60°,則|FM|=( 。
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一系列函數(shù)的解析式相同,值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,那么函數(shù)解析式為y=-x2,值域為{-1,-9}的“同族函數(shù)”共有( 。
A、7個B、8個C、9個D、10個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+3|-m,m∈R,且f(x-2)≤0的解集為[-3,1].
(Ⅰ)求m的值;
(Ⅱ)已知a,b,c都是正數(shù),且a+b+c=m,求證:
1
a+b
+
1
b+c
+
1
c+a
9
4

查看答案和解析>>

同步練習(xí)冊答案