【題目】某校有、、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎(jiǎng),在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四件參賽作品的獲獎(jiǎng)情況預(yù)測(cè)如下.

甲說:“、同時(shí)獲獎(jiǎng).”

乙說:“、不可能同時(shí)獲獎(jiǎng).”

丙說:“獲獎(jiǎng).”

丁說:“、至少一件獲獎(jiǎng)”

如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測(cè)是正確的,則獲獎(jiǎng)的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

【答案】D

【解析】

根據(jù)條件可判斷出乙丁預(yù)測(cè)正確,而甲丙預(yù)測(cè)錯(cuò)誤,這樣根據(jù)這四位同學(xué)的預(yù)測(cè)即可得出獲獎(jiǎng)的作品.

乙,丁預(yù)測(cè)的是正確的,甲,丙預(yù)測(cè)的是錯(cuò)誤的;

丙預(yù)測(cè)錯(cuò)誤,C不獲獎(jiǎng);

丁預(yù)測(cè)正確,A,C至少一件獲獎(jiǎng),A獲獎(jiǎng);

甲預(yù)測(cè)錯(cuò)誤,即A,B不同時(shí)獲獎(jiǎng),B不獲獎(jiǎng);

D獲獎(jiǎng);

即獲獎(jiǎng)的作品是作品A與作品D.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,、是給定的非零整數(shù),

1)若,,求;

2)證明:從中一定可以選取無窮多項(xiàng)組成兩個(gè)不同的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCDABCD′的棱長(zhǎng)為1,EF分別是棱AA′,CC′的中點(diǎn),過直線E,F的平面分別與棱BB′、DD′交于M,N,設(shè)BMx,x∈[0,1],給出以下四個(gè)命題:

平面MENF⊥平面BDDB′;

當(dāng)且僅當(dāng)x時(shí),四邊形MENF的面積最小;

四邊形MENF周長(zhǎng)Lfx),x∈[0,1]是單調(diào)函數(shù);

四棱錐C′﹣MENF的體積Vhx)為常函數(shù);

以上命題中假命題的序號(hào)為( 。

A. ①④B. C. D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測(cè)數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/個(gè)

6

11

20

27

57

77

經(jīng)計(jì)算得: , , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x,y|x-42+y2=1},B={x,y|x-t2+y-at+22=1},如果命題tRAB是真命題,則實(shí)數(shù)a的取值范圍是( 。

A.B.

C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若曲線和曲線有三個(gè)公共點(diǎn),求以這三個(gè)公共點(diǎn)為頂點(diǎn)的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若在區(qū)間上存在不相等的實(shí)數(shù),使成立,求的取值范圍;

(Ⅲ)若函數(shù)有兩個(gè)不同的極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人.”其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人.”在該問題中的1864人全部派遣到位需要的天數(shù)為( )

A. 9B. 16C. 18D. 20

查看答案和解析>>

同步練習(xí)冊(cè)答案