分析 (1)由條件利用正弦函數(shù)的周期性求得ω的值,可得f(x)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的增區(qū)間.
(2)由條件利用兩個(gè)向量的數(shù)量積公式求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域求得函數(shù)g(x)在區(qū)間[$\frac{π}{8}$,$\frac{π}{3}$]上的最大值和最小值.
解答 解:(1)函數(shù)f(x)=4sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為$\frac{2π}{ω}$=π,∴ω=2,
函數(shù)f(x)=4sin(2x+$\frac{π}{4}$).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,故函數(shù)f(x)的增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
(2)g(x)=$\overrightarrow{a}$•$\overrightarrow$=-f(-x)+f(x)=-4sin(-2x+$\frac{π}{4}$)+4sin(2x+$\frac{π}{4}$)
=-4sin(-2x)cos$\frac{π}{4}$-4cos(-2x)sin$\frac{π}{4}$+4sin2xcos$\frac{π}{4}$+4cos2xsin$\frac{π}{4}$
=8sin2xsin$\frac{π}{4}$=4$\sqrt{2}$sin2x,
∵x∈[$\frac{π}{8}$,$\frac{π}{3}$],∴2x∈[$\frac{π}{4}$,$\frac{2π}{3}$],sin2x∈[$\frac{\sqrt{2}}{2}$,1],故f(x)∈[4,4$\sqrt{2}$],
故當(dāng)2x=$\frac{π}{4}$時(shí),f(x)取得最小值為4,當(dāng)2x=$\frac{π}{2}$時(shí),f(x)取得最大值為4$\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積公式,正弦函數(shù)的周期性和單調(diào)性,正弦函數(shù)的定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\widehat{y}$=1.04x+2 | B. | $\widehat{y}$=1.04x+1.9 | C. | $\widehat{y}$=1.05x+1.9 | D. | $\widehat{y}$=1.9x+1.04 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 20 | C. | 33 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com