12.已知f(x2-1)的定義域?yàn)?[-\sqrt{3},\sqrt{3}]$,則f(x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-2,1]B.[0,3]C.[-1,2]D.[-$\sqrt{3}$,$\sqrt{3}$]

分析 f(x2-1)的定義域?yàn)?[-\sqrt{3},\sqrt{3}]$,可得$-\sqrt{3}≤x≤\sqrt{3}$,即-1≤x2-1≤2.由-1≤x-1≤2,解出即可得出.

解答 解:∵f(x2-1)的定義域?yàn)?[-\sqrt{3},\sqrt{3}]$,
∴$-\sqrt{3}≤x≤\sqrt{3}$,
∴-1≤x2-1≤2.
由-1≤x-1≤2,
解得0≤x≤3.
則f(x-1)的定義域?yàn)閇0,3].
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的定義域求法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}為等差數(shù)列,且各項(xiàng)均不為0,Tn為其前n項(xiàng)和,T2n-1=an2,n∈N+,若不等式$\frac{{4×{{({-1})}^n}}}{n}+1≥\frac{{t{{({-1})}^{n+1}}}}{{{a_{n+1}}}}$對(duì)任意的正整數(shù)n恒成立,則t的取值集合為{-15,-9}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.等比數(shù)列{an}的公比不為1,若a1=1,且對(duì)任意的n∈N*,都有an+1、an、an+2成等差數(shù)列,則{an}的前5項(xiàng)和S5=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列關(guān)系正確的是( 。
A.0∉NB.$\sqrt{2}∈Q$C.∅⊆{0}D.∅={0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知命題p:方程x2-(2+a)x+2a=0在[-1,1]上有且僅有一解;命題q:存在實(shí)數(shù)x使不等式x2+2ax+2a≤0成立,若命題“¬p且q”是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知兩個(gè)相關(guān)變量的統(tǒng)計(jì)數(shù)據(jù)如表:
x23456
y1115192629
求兩變量的線性回歸方程.
參考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\overline{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC的三個(gè)頂點(diǎn)在以O(shè)為球心的球面上,且C=$\frac{π}{3}$,AC=4,△ABC的面積為2$\sqrt{3}$,三棱錐O-ABC的體積為$\frac{\sqrt{6}}{6}$,則球O的表面積為$\frac{33π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.方程x2-2mx+m2-1=0的一根在(0,1)內(nèi),另一根在(2,3)內(nèi),則實(shí)數(shù)m的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.給出下列四個(gè)命題:
①命題“若α=β,則cosα=cosβ”的逆否命題;
②“?x0∈R,使得x02-x0>0”的否定是:“?x∈R,均有x2-x<0”;
③命題“x2=4”是“x=-2”的充分不必要條件;
④p:a∈{a,b,c},q:{a}⊆{a,b,c},p且q為真命題.
其中真命題的序號(hào)是①④.(填寫所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案