分析 (1)由條件利用兩角和差的余弦公式求出tanA=$\sqrt{3}$,可得A=$\frac{π}{3}$.
(2)由條件求得b=2c,利用余弦定理求得a=$\sqrt{3}$c、再利用勾股定理求得△ABC為直角三角形,從而求得sinC的值.
解答 解:(1)△ABC中,由$cos(\frac{π}{3}-A)=2cosA$,得$\frac{1}{2}$cosA+$\frac{\sqrt{3}}{2}$sinA=2cosA,即 $\sqrt{3}$sinA=3cosA,
∴tanA=$\sqrt{3}$,∴A=$\frac{π}{3}$.
(2)由$S=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{2}{c^2}⇒b=2c$,
由余弦定理:${a^2}={b^2}+{c^2}-2bccosA⇒a=\sqrt{3}c$,∴a2+c2=b2,△ABC為直角三角形,
易得 sinC=$\frac{c}$=$\frac{1}{2}$.
點評 本題主要考查兩角和差的余弦公式,余弦定理、勾股定理,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 一切實數(shù) | B. | 3或-1 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{48}{25}$ | B. | -2 | C. | $-\frac{11}{5}$ | D. | $\frac{9}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com