分析 (1)根據(jù)圖象的平移即可得到函數(shù)的解析式,
(2)方法一,采取分離參數(shù),轉(zhuǎn)化為$k=\frac{{2|{x-1}|+1}}{x^2}$在x∈[1,3]上有解或者$k=\frac{{2|{x-1}|+1}}{x^2}$在$x∈[{\frac{1}{2},1})$上有解,根據(jù)函數(shù)的性質(zhì)即可求出k的范圍
方法二,采用根的分布,原題等價于kx2-2(x-1)-1=0在x∈[1,3]上有解或者kx2-2(1-x)-1=0在$x∈[{\frac{1}{2},1}]$上有解,分別根據(jù)根與系數(shù)的關(guān)系即可求出k的范圍.
解答 解:(1)由圖象的平移,h(x)=2|x-1|+1
(2)解:函數(shù)y=h(x)的圖象與函數(shù)g(x)=kx2的圖象在$x∈[{\frac{1}{2},3}]$上至少有一個交點,等價于h(x)-g(x)=0在$x∈[{\frac{1}{2},3}]$上有解,
即2|x-1|+1-kx2=0在$x∈[{\frac{1}{2},3}]$上有解,
解法一:用分離參數(shù)處理:kx2=2|x-1|+1在$x∈[{\frac{1}{2},3}]$上有解,$k=\frac{{2|{x-1}|+1}}{x^2}$在$x∈[{\frac{1}{2},3}]$上有解,
等價于$k=\frac{{2|{x-1}|+1}}{x^2}$在x∈[1,3]上有解或者$k=\frac{{2|{x-1}|+1}}{x^2}$在$x∈[{\frac{1}{2},1})$上有解,
因為$k=\frac{{2({x-1})+1}}{x^2}=-\frac{1}{x^2}+\frac{2}{x}=-{({\frac{1}{x}-1})^2}+1,因為\frac{1}{x}∈[{\frac{1}{3},1}],所以k∈[{\frac{5}{9},1}]$$k=\frac{{2({1-x})+1}}{x^2}=\frac{3}{x^2}-\frac{2}{x}=3{({\frac{1}{x}-\frac{1}{3}})^2}-\frac{1}{3},因為\frac{1}{x}∈({1,2}]所以k∈[{1,8}]$
綜上,$k∈[{\frac{5}{9},8}]$.
解法二:用實根分布:
原題等價于kx2-2(x-1)-1=0在x∈[1,3]上有解或者kx2-2(1-x)-1=0在$x∈[{\frac{1}{2},1}]$上有解,
(1)kx2-2(x-1)-1=0在x∈[1,3]上有解
令g(x)=kx2-2(x-1)-1,k=0時顯然無解.
當(dāng)k<0時,$g(1)•g(3)≤0⇒\frac{5}{9}≤k≤1$(舍)
當(dāng)k>0,$g(1)•g(3)≤0⇒\frac{5}{9}≤k≤1$或者$\left\{{\begin{array}{l}{1≤\frac{1}{k}≤3}\\{△=4-4k≥0⇒k=1}\\{g(1)≥0}\\{g(3)≥0}\end{array}}\right.⇒k=1$
所以$\frac{5}{9}≤k≤1$
(2)kx2-2(1-x)-1=0在$x∈[{\frac{1}{2},1}]$上有解:
令h(x)=kx2+2x-3,k=0時顯然無解.
當(dāng)k>0時,$h(1)•h({\frac{1}{2}})≤0⇒1≤k≤8$,所以1≤k≤8
當(dāng)k<0時,$h(1)•h({\frac{1}{2}})≤0⇒1≤k≤8$(舍)或者$\left\{{\begin{array}{l}{\frac{1}{2}≤-\frac{1}{k}≤1}\\{△=4+12k≥0⇒k∈∅}\\{h(1)≤0}\\{h({\frac{1}{2}})≤0}\end{array}}\right.$
所以1≤k≤8
綜上,$k∈[{\frac{5}{9},8}]$.
點評 本題考查了函數(shù)解析式的求法和根的分布問題,關(guān)鍵是分類討論,考查學(xué)生分析解決問題的能力,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{1,\sqrt{2}}]$ | B. | [2,4] | C. | $[{\sqrt{2},2}]$ | D. | $[{1,\sqrt{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2800元 | B. | 3000元 | C. | 3800元 | D. | 3818元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 既不充分也不必要條件 | ||
C. | 充分不必要條件 | D. | 必要不充分條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com