A. | [-5,5] | B. | [-$\sqrt{5}$,5] | C. | [-5,$\sqrt{5}$] | D. | [-$\sqrt{5},\sqrt{5}$] |
分析 如圖所示,$|\overrightarrow{OM}|$=$\sqrt{{3}^{2}+{4}^{2}}$=5.$|\overrightarrow{ME}|$=1.由已知可得$\overrightarrow{ME}•\overrightarrow{MF}$=0,$\overrightarrow{OF}=\overrightarrow{OM}+\overrightarrow{MF}$,因此$\overrightarrow{ME}•\overrightarrow{OF}$=$\overrightarrow{ME}•\overrightarrow{OM}$=-5$cos<\overrightarrow{ME},\overrightarrow{MO}>$,由于$<\overrightarrow{ME},\overrightarrow{MO}>$∈[0,π],即可得出.
解答 解:如圖所示,
$|\overrightarrow{OM}|$=$\sqrt{{3}^{2}+{4}^{2}}$=5.
$|\overrightarrow{ME}|$=1.
∵$\overrightarrow{ME}⊥\overrightarrow{MF}$,
∴$\overrightarrow{ME}•\overrightarrow{MF}$=0,
∵$\overrightarrow{OF}=\overrightarrow{OM}+\overrightarrow{MF}$,
∴$\overrightarrow{ME}•\overrightarrow{OF}$=$\overrightarrow{ME}$•$(\overrightarrow{OM}+\overrightarrow{MF})$
=$\overrightarrow{ME}•\overrightarrow{OM}$+$\overrightarrow{ME}•\overrightarrow{MF}$
=$\overrightarrow{ME}•\overrightarrow{OM}$
=-$|\overrightarrow{ME}||\overrightarrow{OM}|cos<\overrightarrow{ME},\overrightarrow{MO}>$
=-5$cos<\overrightarrow{ME},\overrightarrow{MO}>$,
∵$<\overrightarrow{ME},\overrightarrow{MO}>$∈[0,π],
∴$\overrightarrow{ME}•\overrightarrow{OF}$∈[-5,5].
故選:A.
點評 本題考查了數(shù)量積運算性質(zhì)、圓的標準方程、向量三角形法則、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36 | B. | 37 | C. | 38 | D. | 39 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com