甲、乙、丙三人參加某項(xiàng)測試,他們能達(dá)標(biāo)的概率分別是
3
4
,
3
5
,m,且三人能否達(dá)標(biāo)互不影響.
(Ⅰ)若三人中至少有一人達(dá)標(biāo)的概率是
24
25
,求m的值;
(Ⅱ)設(shè)甲在3次相互獨(dú)立的測試中能達(dá)標(biāo)的次數(shù)為隨機(jī)變量ξ,求ξ的概率分布列及數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)設(shè)三人中到少有一人達(dá)棱為事件A,則1-P(
.
A
)=1-(1-
3
4
)(1-
3
5
)(1-m)=
24
25
,由此能求出m.
(Ⅱ)由題意知ξ的所有可能ξ 值為0,1,2,3,分別求出相對(duì)應(yīng)的概率,由此能求出ξ的分布列和Eξ.
解答: 解:(Ⅰ)設(shè)三人中到少有一人達(dá)棱為事件A,
則1-P(
.
A
)=1-(1-
3
4
)(1-
3
5
)(1-m)=
24
25
,
解得m=
3
5

(Ⅱ)由題意知ξ的所有可能ξ 值為0,1,2,3,
P(ξ=0)=
C
0
3
(
1
4
)3=
1
64
,
P(ξ=1)=
C
1
3
(
3
4
)(
1
4
)2
=
9
64

P(ξ=2)=
C
2
3
(
3
4
)2(
1
4
)=
27
64
,
P(ξ=3)=
C
3
3
(
3
4
)3
=
27
64

∴ξ的分布列為:
 ξ  0  1  2  3
 P  
1
64
 
9
64
 
27
64
 
27
64
Eξ=
1
64
+1×
9
64
+2×
27
64
+3×
27
64
=
9
4
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},則∁U(M∪N)的元素個(gè)數(shù)有( 。
A、0個(gè)B、1個(gè)C、2D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).如圖所示莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請(qǐng)?zhí)顚懴旅娴?×2表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 乙班 合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)
下面臨界值表僅供參考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.79 10.828
(參考公式:x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
m
=(2cosA,
3
sinA),
n
=(cosA,-2cosA),
m
n
=-1.
(1)若a=2
3
,c=2,求S△ABC
(2)求
b-2c
2cos(
π
3
+C)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)銳角三角形ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且
3
a=2bsinA.
(Ⅰ)求B的大;
(Ⅱ)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的極坐標(biāo)方程為ρ2-4
2
ρ•cos(θ-
π
4
)+6=0,求ρ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,Sn是{an}的前n項(xiàng)和,且3Sn=(n+2)an(n∈N+).
(Ⅰ)若記bn=
an
n(n+1)
,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)記cn=
an
an+1
+
an+1
an
,證明:2n<c1+c2+…+cn<2n+3,n=1,2,….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

條件p:-2<x<4,條件q:(x+2)(x+a)<0;若p是q的充分而不必要條件,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
(1)若m⊥α,n∥α,則m⊥n.
(2)若α∥β,β∥γ,m⊥α,則m⊥γ.
(3)若m∥α,n∥α,則m∥n.
(4)若α⊥β,β⊥γ,則α∥γ.
其中真命題是
 
. (填正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案