【題目】教育學(xué)家分析發(fā)現(xiàn)加強語文樂隊理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗證這個結(jié)論,從該校選擇甲乙兩個同軌班級進行試驗,其中甲班加強閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時間后進行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強語文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?
(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時間在6—8分鐘,現(xiàn)小明、小剛同時獨立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明現(xiàn)正確解答完的概率;
(3)現(xiàn)從乙班成績優(yōu)秀的8名同學(xué)中任意抽取兩人,并對他們點答題情況進行全程研究,記A、B兩人中被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
【答案】(1)見解析; (2) ;(3)見解析.
【解析】試題分析:(1)由表中數(shù)據(jù)計算,對照臨界值得出結(jié)論;(2)設(shè)小明與小剛解答這道題所用的時間分別為分鐘,寫出基本事件所滿足的平面區(qū)域,由幾何概型計算概率值;(3)由題意寫出的所有可能取值,計算對應(yīng)的概率,求出的分布列和數(shù)學(xué)期望.
試題解析:(1)由表中數(shù)據(jù)得的觀測值
所以根據(jù)統(tǒng)計有的把握認(rèn)為加強語文閱讀理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān).
(2)設(shè)小明和小剛解答這道數(shù)學(xué)應(yīng)用題的時間分別為分鐘,
則基本事件滿足的區(qū)域為 (如圖所示)
設(shè)事件為“小剛比小明先解答完此題” 則滿足的區(qū)域為
由幾何概型 即小剛比小明先解答完此題的概率為.
(3)可能取值為, , ,
的分布列為:
1 | |||
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項數(shù)列{an}的前n項和是Sn , 若{an}和{ }都是等差數(shù)列,且公差相等,則a1= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,點在直線上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為坐標(biāo)原點, 為直線上一動點,過點作直線與橢圓相切點于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明想將短軸長為2,長軸長為4的一個半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內(nèi)接于半橢圓,DE∥AB,AB為短軸,OC為長半軸
(1)求梯形ABDE上底邊DE與高OH長的關(guān)系式;
(2)若半橢圓上到H的距離最小的點恰好為C點,求底邊DE的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4 坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點, 軸正半軸為極軸建立極坐標(biāo)系.
(1)寫出的極坐標(biāo)方程,并將化為普通方程;
(2)若直線的極坐標(biāo)方程為與相交于兩點,
求的面積(為圓的圓心).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù), 是數(shù)列的前項和,且.
(1)求數(shù)列的通項公式;
(2)已知,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為自然對數(shù)的底數(shù)),, .
(1)若,且直線分別與函數(shù)和的圖象交于,求兩點間的最短距離;
(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com