武漢電視臺為了宣傳武漢城市圈的情況,特舉辦了一期有獎知識問答活動,活動對18~48歲的人群隨機抽取n人回答問題“武漢城市圈包括哪幾個城市”,統(tǒng)計數(shù)據(jù)結(jié)果如表:
組數(shù)分組回答正確的人數(shù)占本組的頻率
第1組[18,28)240x
第2組[28,38)3000.6
第3組[38,48]a0.4
(1)分別求出n,a,x的值;
(2)依據(jù)如圖頻率分布直方圖求參與活動人群年齡的眾數(shù)的估計值是多少?中位數(shù)的估計值是多少?
(3)若以表中的頻率近似看作各年齡組正確回答問題的概率,規(guī)定年齡在[38,48]內(nèi)回答正確的得獎金200元,回答錯誤的得鼓勵獎金20元,年齡在[18,28)內(nèi)回答正確的得獎金100元,回答錯誤的得鼓勵獎金10元,主持人隨機請一家庭的兩個成員(父親46歲,孩子21歲)回答問題,設該家庭獲得獎金數(shù)為t元,記事件A為“數(shù)列an=-5n2+
t-40
n為遞減數(shù)列”,求事件A發(fā)生的概率P(A).
考點:古典概型及其概率計算公式,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)由頻率表中第2組數(shù)據(jù)可知第2組總?cè)藬?shù)為
300
0.6
,再結(jié)合頻率分布直方圖可得a值和x值;
(2)依據(jù)上頻率分布直方圖可得要求的數(shù)值特征;
(3)可得父親回答正確的概率為0.4,孩子回答正確的概率為0.8,由題意可知該家庭獲得獎金數(shù)為t元,t的值有300,210,120,30,由數(shù)列的知識可得40≤t<265,則t=120,210,可得概率.
解答: 解:(1)由頻率表中第2組數(shù)據(jù)可知第2組總?cè)藬?shù)為
300
0.6
=500,
再結(jié)合頻率分布直方圖可知n=
500
0.05×10
=1000,
∴a=1000×0.02×10×0.4=80,
∴x=
240
1000×0.03×10
=0.8
(2)依據(jù)上頻率分布直方圖求參與活動人群年齡的眾數(shù)的估計值在[28,38)中,
即眾數(shù)的估計值為
28+38
2
=33
,
中位數(shù)的估計值在[28,38)中,0.03×10+(t-28)×0.05=0.5,得t=32,
即中位數(shù)的估計值為32
(3)父親回答正確的概率為0.4,孩子回答正確的概率為0.8,
由題意可知該家庭獲得獎金數(shù)為t元,t的值有300,210,120,30,
an=-5n2+
t-40
n
為遞減數(shù)列,
則an+1<an對于對一切n∈N*均成立,
-5(n+1)2+
t-40
(n+1)<
-5n2+
t-40
n
,
t-40
<10n+5
對一切n∈N*均成立,
t-40
<15
,解得40≤t<265,則t=120,210,
即父親回答錯誤且孩子回答正確或父親回答正確且孩子回答錯誤,
則P(A)=(1-0.4)×0.8+0.4×(1-0.8)=0.56
點評:本題考查古典概型及其概率公式,涉及頻率分布直方圖和數(shù)列,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

過點M(1,1)作斜率為-
1
2
的直線與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)相交于A,B,若M是線段AB的中點,則橢圓C的離心率為( 。
A、
2
2
B、
3
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求證:平面BCD⊥平面ABC;
(Ⅱ)求證:AF∥平面BDE;
(Ⅲ)求直線BE與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足以下兩個條件:
①對任意的x,y∈R,f(x-y+1)=f x)f(y)+f(1-x)f(1-y);
②f(x)在區(qū)間[0,1]上單調(diào)遞增;
(1)求f(0);
(2)求證:f(x)是圖象關(guān)于直線x=1對稱的奇函數(shù);
(3)求不等式的解集f(x)≥
1
2
的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在豎直平面內(nèi)有一個“游戲滑道”,空白部分表示光滑道.黑色正方形表示障礙物,自上而下第一行有1個障礙物,第二行有2個障礙物,…,依此類推.一個半徑適當?shù)墓饣鶆蛐∏驈娜肟贏投入滑道,小球?qū)⒆杂上侣,已知小球每次遇到正方形障礙物上頂點時,向左、右兩邊下落的概率都是
1
2
.記小球遇到第n行第m個障礙物(從左至右)上頂點的概率為P(n,m)=C
 
m-1
n-1
1
2
n-1
(Ⅰ)求P(4,1),P(4,2)的值;
(Ⅱ)已知f(x)=
4-x,1≤x≤3
x-3,3<x≤6
,設小球遇到第6行第m個障礙物(從左至右)上頂點時,得到的分數(shù)為ξ=f(m),試求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

莫言是中國首位獲得諾貝爾獎的文學家,國人歡欣鼓舞,某學校文學社從男女生中各抽取100名學生調(diào)查對莫言作品的了解程度,對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.調(diào)查結(jié)果如下表:
男生女生合計
非常了解80m140
一般了解n4060
合計100100200
參考數(shù)據(jù):K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.500.400.252.150.100.020.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(1)求m,n的值;
(2)在犯錯誤的概率下不超過多少的前提下認為“對莫言作品非常了解與性別有關(guān)”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,右焦點F2到直線
x
a
+
y
b
=0的距離為1.
(1)求橢圓的C方程;
(2)已知直線y=k(x-2)(k≠0)與橢圓C相交于M、N兩點,在軸x上是否存在定點E,使
EM
EM
為定值?若存在,求出E點的坐標和定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC---A1B1C1中,D、E分別是AB、BB1的中點,
(1)證明:BC1∥平面A1CD
(2)若AA1=AB=BC=CA=2,側(cè)棱AA1⊥底面ABC,求三棱錐A1-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1的參數(shù)方程為:
x=1-2t
y=3+t
,t為參數(shù).
(1)將直線l1的參數(shù)方程化成直線的普通方程(寫成一般式);
(2)已知直線l2:x+y-2=0,判斷l(xiāng)1與l2是否相交,如果相交,請求出交點坐標.

查看答案和解析>>

同步練習冊答案