19.已知x=27,y=64.化簡并計算$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$.

分析 化簡表達式,代入x,y的值,求解即可.

解答 解:x=27,y=64.
$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$=$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{\frac{5}{24}{x}^{-\frac{2}{3}}{y}^{\frac{1}{3}}}$=${24y}^{\frac{1}{6}}$=24×${2}^{6×\frac{1}{6}}$=48.  …(8分).

點評 本題考查函數(shù)值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的兩個焦點,P為橢圓上一點,且△PF1F2是直角三角形,且S${\;}_{△P{F}_{1}{F}_{2}}$=$\frac{3}{2}$,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a>0,b>0若$\sqrt{{3}^{5}}$是3a與3b的等比中項,則$\frac{1}{a}+\frac{1}$的最小值為( 。
A.$\frac{8}{3}$B.$\frac{4}{5}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(3${\;}^{{x}^{2}-1}$)的定義域是[-1,1],則f(log3x)的定義域是( 。
A.(0,$\root{3}{3}$)B.[$\root{3}{3}$,3]C.[3,+∞)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)是R上的奇函數(shù),且當(dāng)x>0時f(x)=x(1-x),則當(dāng)x<0時f(x)的解析式是f(x)=( 。
A.-x(x-1)B.-x(x+1)C.x(x-1)D.x(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知三角形的頂點A(-5,0),B(3,-3),C(0,2),試求:
(1)BC邊所在直線的方程;
(2)AC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a,b為正數(shù),且直線x-(2b-3)y+6=0與直線2bx+ay-5=0互相垂直,則2a+3b的最小值為$\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若對任意的實數(shù)x,都有acosx-bsinx=1,則( 。
A.$\frac{1}{a^2}+\frac{1}{b^2}$≥1B.$\frac{1}{a^2}+\frac{1}{b^2}$≤1C.a2+b2≥1D.a2+b2≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,A(2,4),B(1,-3),C(-2,1),則邊BC上的高AD所在的直線的點斜式方程為y=$\frac{3}{4}$x+$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊答案