【題目】如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)F做x軸的垂線交橢圓于A,B兩點(diǎn),且.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若M,N為橢圓上異于點(diǎn)A的兩點(diǎn),且直線的傾斜角互補(bǔ),問直線MN的斜率是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.
【答案】(1) ;(2) .
【解析】試題分析:(1) 由題意可知,令,代入橢圓可得,又,解出a,b,可得橢圓方程;(2) 由(1)可知, ,代入橢圓可得,所以, 因?yàn)橹本的傾斜角互補(bǔ),所以直線的斜率與的斜率互為相反數(shù);設(shè)直線方程為: ,與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理可求出點(diǎn)M的坐標(biāo),同理求出N點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)的斜率公式,代入化簡(jiǎn)可得定值.
試題解析:
(1)由題意可知,
令,代入橢圓可得,所以,又,
兩式聯(lián)立解得: ,
.
(2)由(1)可知, ,代入橢圓可得,所以,
因?yàn)橹本的傾斜角互補(bǔ),所以直線的斜率與的斜率互為相反數(shù);
可設(shè)直線方程為: ,代入得:
,
設(shè), ,因?yàn)辄c(diǎn)在橢圓上,
所以, , ,
又直線的斜率與的斜率互為相反數(shù),在上式中以代替,可得
, ,
所以直線的斜率,
即直線的斜率為定值,其值為.
點(diǎn)睛: 本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達(dá)定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達(dá)定理及判別式是解決圓錐曲線問題的重點(diǎn)方法之一,尤其是弦中點(diǎn)問題,弦長(zhǎng)問題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),為了解這項(xiàng)政策的落實(shí)情況,有關(guān)部門就“你某天在校體育活動(dòng)時(shí)間是多少”的問題,在某校隨機(jī)抽查了部分學(xué)生,再根據(jù)活動(dòng)時(shí)間t(小時(shí))進(jìn)行分組(A組:t<0.5,B組:0.5≤t≤1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問題:
(1)此次抽查的學(xué)生數(shù)為人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)從抽查的學(xué)生中隨機(jī)詢問一名學(xué)生,該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是
(4)若當(dāng)天在校學(xué)生數(shù)為1200人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識(shí),梁才學(xué)校高二年級(jí)舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請(qǐng)你根據(jù)頻率分布表解答下列問題:
序號(hào) | 分組 | 組中值 | 頻數(shù) | 頻率 |
(i) | (分?jǐn)?shù)) | (Gi) | (人數(shù)) | (Fi) |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格;
(2)為鼓勵(lì)更多的學(xué)生了解“數(shù)學(xué)史”知識(shí),成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在
參加的800名學(xué)生中大概有多少名學(xué)生獲獎(jiǎng)?
(3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的S的值.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為與,且乙投球2次均未命中的概率為。
(1)求乙投球的命中率。
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過點(diǎn)A(﹣6,0)的直線l1與直線l2:y=2x相交于點(diǎn)B(m,4).
(1)求直線l1的表達(dá)式;
(2)過動(dòng)點(diǎn)P(n,0)且垂于x軸的直線與l1 , l2的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),寫出n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,求在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A和產(chǎn)品B的利潤(rùn)之和的最大值(元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2mx+m﹣1(m>0)與x軸的交點(diǎn)為A,B.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)m=1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);
②若拋物線在點(diǎn)A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是直角梯形,.
(1)求二面角的余弦值;
(2)設(shè)是棱上一點(diǎn),是的中點(diǎn),若與平面所成角的正弦值為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在軸上,半徑為1,直線被圓所截的弦長(zhǎng)為,且圓心在直線的下方.
(1)求圓的方程;
(2)設(shè),若圓是的內(nèi)切圓,求的面積的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com