用數(shù)學(xué)歸納法證明1+++…+<n(n∈N*,n>1)時(shí),第一步應(yīng)驗(yàn)證不等式( )
A.1+<2 B.1++<2
C.1++<3 D.1+++<3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設(shè)1件產(chǎn)品的利潤(單位:萬元)為ξ.
(1)求ξ的分布列;
(2)求1件產(chǎn)品的平均利潤(即ξ的均值);
(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時(shí)要求1件產(chǎn)品的平均利潤不小于4.73萬元,則三等品率最多是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知“整數(shù)對(duì)”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個(gè)“整數(shù)對(duì)”是( )
A.(7,5) B.(5,7)
C.(2,10) D.(10,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”,類似地,我們?cè)趶?fù)數(shù)集C上也可以定義一個(gè)稱為“序”的關(guān)系,記為“⊳”.定義如下:對(duì)于任意兩個(gè)復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1、b1、a2、b2∈R,i為虛數(shù)單位),當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2時(shí),z1⊳z2”.下列命題為假命題的是( )
A.1⊳i⊳0
B.若z1⊳z2,z2⊳z3,則z1⊳z3
C.若z1⊳z2,則對(duì)于任意z∈C,z1+z⊳z2+z
D.對(duì)于復(fù)數(shù)z⊳0,若z1 ⊳z2,則z·z1⊳z·z2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
觀察①sin210°+cos240°+sin10°cos40°=;
②sin26°+cos236°+sin6°cos36°=.
由上面兩題的結(jié)構(gòu)規(guī)律,你能否提出一個(gè)猜想?并證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}滿足a1=0,a2=1,當(dāng)n∈N*時(shí),an+2=an+1+an.求證:數(shù)列{an}的第4m+1項(xiàng)(m∈N*)能被3整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知曲線C的參數(shù)方程為(t為參數(shù)),C在點(diǎn)(1,1)處的切線為l,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則l的極坐標(biāo)方程為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com