函數(shù)f(x)=
3
sinωxcosωx+cos2ωx-
1
2
(ω>0),其最小正周期為
π
2
,則ω=
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用三角函數(shù)的恒等變換,化簡f(x),求出它的最小正周期T,即可得出ω的值.
解答: 解:∵f(x)=
3
sinωxcosωx+cos2ωx-
1
2

=
3
2
sin2ωx+
1
2
cos2ωx
=sin(2ωx+
π
6
)(ω>0),
且最小正周期為
π
2
;
=
π
2
,
解得ω=2.
故答案為:2.
點(diǎn)評:本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了三角函數(shù)的恒等變換的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x
ax+b
(a≠0),f(2)=1,又方程f(x)=x有唯一解,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(3x+
π
4
)-1的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn),過點(diǎn)F2作AB⊥x軸交橢圓于A、B兩點(diǎn),若△F1AB為等腰直角三角形,且∠AF1B=90°,則橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐C-ABD中(如圖),△ABD與△CBD是全等的等腰直角三角形,O為斜邊BD的中點(diǎn),AB=4,二面角A-BD-C的大小為60°并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
;⑤四面體ABCD的外接球表面積為32π,其中真命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)E(0,2),拋物線C:y2=2px(p>0)的焦點(diǎn)為F,線段EF與拋物線C的交點(diǎn)為M,過M作拋物線準(zhǔn)線的垂線,垂足為Q,若∠EQF=90°,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|y=
log
1
2
(x2-1)
},N={x|
1
2
<2x+1<4},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx<0,且sinx-cosx>0,那么角x是( 。
A、第一象限的角
B、第二象限的角
C、第三象限的角
D、第四象限的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

能使不等式log2x<x2<2x成立的自變量x的取值范圍是(  )
A、x>0B、x>2
C、x<2D、0<x<2

查看答案和解析>>

同步練習(xí)冊答案