11.函數(shù)f(x)=1+ax-2(a>0,且a≠1)恒過(guò)定點(diǎn)(2,2).

分析 根據(jù)指數(shù)函數(shù)的性質(zhì)進(jìn)行求解即可.

解答 解:由x-2=0得x=2,此時(shí)f(2)=1+a0=1+1=2,
即函數(shù)過(guò)定點(diǎn)(2,2),
故答案為:(2,2)

點(diǎn)評(píng) 本題主要考查指數(shù)函數(shù)過(guò)定點(diǎn)問題,利用指數(shù)冪等于0是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x+2)=-f(x),當(dāng)x∈[4,6]時(shí)f(x)=2x-1,求f(x)在[0,2]上的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知直線l:ax+by+c=0及圓P:x2+y2=1,其中a,b,c滿足條件:a2+b2=k2c2,其中(c≠0,k≠0)
(1)試討論直線l與圓P的位置關(guān)系,
(2)若直線l被圓P截得的弦長(zhǎng)為1,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若a,b,c>0,且$a(a+b+c)+bc=4+2\sqrt{3}$,則2a+b+c的最小值為( 。
A.$\sqrt{3}-1$B.$2\sqrt{3}+2$C.$\sqrt{3}+1$D.$2\sqrt{3}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12
(1)求{an}通項(xiàng)公式;
(2)記{an}的前n項(xiàng)和為Sn,若a1,ak+1,Sk+3成等比數(shù)列,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)$f(x)=\frac{4x-6}{x-1}$的定義域和值域都是[2,b](b>2),則實(shí)數(shù)b的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某連鎖經(jīng)營(yíng)公司的5個(gè)零售店某月的銷售額和利潤(rùn)額資料如表:
 商店名稱
 銷售額(x)/千萬(wàn)元 3 5 6 7 9
 利潤(rùn)(y)/百萬(wàn)元 2 3 3 4 5
(1)若銷售額和利潤(rùn)額具有線性相關(guān)關(guān)系,用最小乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程;
(2)若商店F此月的銷售額為1億1千萬(wàn)元,試用(1)中求得的回歸方程,估測(cè)其利潤(rùn).(精確到百萬(wàn)元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖所示程序框圖中,輸出S=( 。
A.-1B.0C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)全集U={1,2,3,4,5},集合M={1,3,4},則集合∁UM={2,5}.

查看答案和解析>>

同步練習(xí)冊(cè)答案