10.函數(shù)y=sin($\frac{π}{2}$-2015x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

分析 根據(jù)誘導(dǎo)公式和余弦函數(shù)的性質(zhì)即可判斷.

解答 解:y=sin($\frac{π}{2}$-2015x)=cos2015x,
∴函數(shù)為偶函數(shù),
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性,余弦函數(shù)的性質(zhì),誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對(duì)于a,b∈R,定義運(yùn)算“?”:$a?b=\left\{{\begin{array}{l}{{a^2}-ab,a≤b}\\{{b^2}-ab,a>b}\end{array}}\right.$,設(shè)f(x)=(2x-1)?(x-1),且關(guān)于x的方程f(x)=t(t∈R)恰有三個(gè)互不相等的實(shí)數(shù)根x1,x2,x3,則x1+x2+x3的取值范圍是( 。
A.$(\frac{{5-\sqrt{3}}}{4},1)$B.$(1,\frac{{5+\sqrt{3}}}{4})$C.$(\frac{1}{2},1)$D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:如圖的長方體AC′,求證:B′D′∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.點(diǎn)M為雙曲線$\frac{{x}^{2}}{3}$-y2=1右支上任一點(diǎn),點(diǎn)A(3,0)與點(diǎn)M連線段長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.畫出函數(shù)y=|tanx|+tanx的圖象,并根據(jù)圖象求出函數(shù)的主要性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列說法中.所有正確的說法個(gè)數(shù)為( 1。
①對(duì)任意a>0,函數(shù)f(x)=(lnx)2+lnx-a有零點(diǎn)
②函數(shù)y=$\frac{x+3}{x-1}$的冬像關(guān)于點(diǎn)(-1,1)對(duì)稱
③函數(shù)f(x)=cos2x的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為π
④若函數(shù)f(x)=cos2ax的最小正周期是π,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的方程|2x+4-x2|=a恰有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)a的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=(x-1)3+2014(x-1),等差數(shù)列{an}的前n項(xiàng)和為Sn,且f(a2)+f(a2014)=0,則S2015=( 。
A.4030B.4028C.2015D.2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l經(jīng)過點(diǎn)(4,0),且傾斜角為$\frac{3}{4}π$,圓M以$(\sqrt{2},\frac{π}{4})$為圓心,過極點(diǎn).
(Ⅰ)求l與M的極坐標(biāo)方程;
(Ⅱ)判斷l(xiāng)與M的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案