分析 根據(jù)條件f(x)=$\frac{1+f(x-2)}{1-f(x-2)}$,得到函數(shù)f(x)是周期為8的周期函數(shù),進(jìn)行轉(zhuǎn)化求解即可.
解答 解:∵f(x)=$\frac{1+f(x-2)}{1-f(x-2)}$,
∴f(x-2)=$\frac{1+f(x-4)}{1-f(x-4)}$,
∴f(x)=$\frac{1+\frac{1+f(x-4)}{1-f(x-4)}}{1-\frac{1+f(x-4)}{1-f(x-4)}}$=-$\frac{1}{f(x-4)}$,
即f(x-4)=-$\frac{1}{f(x-8)}$
∴f(x)=f(x-8),
即函數(shù)f(x)是周期為8的周期函數(shù),
則f(2006)=f(250×8+6)=f(6),
∵f(2)=2+$\sqrt{3}$,
∴f(4)=$\frac{1+f(2)}{1-f(2)}$=$\frac{1+2+\sqrt{3}}{1-2-\sqrt{3}}$=$\frac{3+\sqrt{3}}{-1-\sqrt{3}}$=-$\sqrt{3}$,
f(6)=$\frac{1+f(4)}{1-f(4)}=\frac{1-\sqrt{3}}{1+\sqrt{3}}$=$\sqrt{3}-2$,
即f(2006)=$\sqrt{3}-2$,
故答案為:$\sqrt{3}-2$.
點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)條件判斷函數(shù)的周期性是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com