分析 要求△ABC的面積,想著先求AB,AC,根據(jù)條件設(shè)∠MAB=θ,則∠CAN=$\frac{π}{2}$-θ,AB=$\frac{1}{cosθ}$,AC=$\frac{\sqrt{2}}{sinθ}$,從而便能求出S△ABC=$\frac{\sqrt{2}}{2sinθcosθ}$=$\frac{\sqrt{2}}{sin2θ}$,所以sin2θ=1時(shí)面積最。畬B,AC分別帶入$\frac{1}{AB}$+$\frac{\sqrt{2}}{AC}$即可求得最大值即可.
解答 解:(1)設(shè)∠MAB=θ(0<θ<$\frac{π}{2}$)則:∠CAN=$\frac{π}{2}$-θ,AB=$\frac{1}{cosθ}$,AC=$\frac{\sqrt{2}}{cos(\frac{π}{2}-θ)}$=$\frac{\sqrt{2}}{sinθ}$;
∴S△ABC=$\frac{1}{2}$•$\frac{1}{cosθ}$•$\frac{\sqrt{2}}{sinθ}$=$\frac{\sqrt{2}}{sin2θ}$≥$\sqrt{2}$;
當(dāng)sin2θ=1,θ=$\frac{π}{4}$時(shí)取等號(hào).
∴△ABC面積的最小值為:$\sqrt{2}$.
(2)$\frac{1}{AB}$+$\frac{\sqrt{2}}{AC}$=cosθ+sinθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$)≤$\sqrt{2}$;
當(dāng)θ+$\frac{π}{4}$=$\frac{π}{2}$,θ=$\frac{π}{4}$時(shí)取等號(hào).
∴$\frac{1}{AB}$+$\frac{\sqrt{2}}{AC}$的最大值為:$\sqrt{2}$.
故答案為:$\sqrt{2}$,$\sqrt{2}$.
點(diǎn)評(píng) 設(shè)∠MAB=θ,并將AB,AC表示出來(lái)是求解本題的關(guān)鍵.本題考查直角三角形邊和角的關(guān)系,兩角和的正弦公式,二倍角的正弦公式,正弦函數(shù)的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{11}{6}$ | C. | 2 | D. | $\frac{13}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(b)>f(-$\frac{3}{4}$) | B. | f(b)>0 | C. | f(b)>f(2) | D. | f(b)<f(2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com