在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項(xiàng):第一次取1,第二次取2個(gè)連續(xù)偶數(shù)2、4;第三次取3個(gè)連續(xù)奇數(shù)5、7、9;第四次取4個(gè)連續(xù)偶數(shù)10、12、14、16;第五次取5個(gè)連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直取下去,得到一個(gè)子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個(gè)子數(shù)列中,由1開始的第15個(gè)數(shù)是
 
,第2014個(gè)數(shù)是
 
考點(diǎn):歸納推理
專題:規(guī)律型,等差數(shù)列與等比數(shù)列
分析:本題是歸納推理,要從中找出數(shù)字遞增的規(guī)律,第n組有連續(xù)個(gè)奇數(shù)和偶數(shù)構(gòu)造,其中奇偶性根n的奇偶性相同,然后利用該規(guī)律解題.
解答: 解:記該數(shù)列1,2,4,5,7,9,10,12,14,16,17,…為{an},
由1開始依次按如下規(guī)則取它的項(xiàng):
第一次取1,
第二次取2個(gè)連續(xù)偶數(shù)2、4;
第三次取3個(gè)連續(xù)奇數(shù)5、7、9;
第四次取4個(gè)連續(xù)偶數(shù)10、12、14、16;
第五次取5個(gè)連續(xù)奇數(shù)17、19、21、23、25,…
可知:第一組的最后一個(gè)數(shù)依次為:1,4,9,16,25,…
歸納得到,每一組的最后一個(gè)數(shù)依次為:12,22,32,42,…,n2,…
即第n個(gè)組最后一個(gè)數(shù)為n2
利用1+2+3+…+n=29或1+2+3+…+n≈29,n∈N*
得到:1+2+3+4+5+6+7+1=29
∴a1,a2,a3,a4,…a29按上述分組共有8組,a29是第8組的第一個(gè)數(shù).
∵第七組最后一個(gè)數(shù)為72=49,
由組間的差為1,得:a29=49+1=50.
由于1+2+3+…+61+62+61=2014,
所以a2014位于第63組,倒數(shù)第三個(gè),
因?yàn)榈?3組最后一個(gè)數(shù)為632=3969,
由組內(nèi)的差為2,得:a2014=3969-4=3965.
故答案為:25,3965.
點(diǎn)評(píng):本題考查的是歸納推理,難點(diǎn)是發(fā)現(xiàn)規(guī)律(每個(gè)組的最后一個(gè)數(shù)是完全平方數(shù)),難度較大.本題還可以分組,利用組內(nèi)的差為2,組間的差為1,根據(jù)所求的數(shù)的位置,統(tǒng)計(jì)兩種差的次數(shù),類比等差數(shù)列,求出該數(shù)的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在1和2之間依次插入n(n∈N*)個(gè)正數(shù)a1,a2,a3,…,an使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,令bn=2log2Tn
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令cn=2n,設(shè)Sn=
b1
c1
+
b2
c2
+…+
bn
cn
,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果命題“關(guān)于x的不等式x2-ax+1<0的解集是空集”是假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將4個(gè)人(含甲、乙)分成兩組,每組2人,則甲、乙分別同一組的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

北京市各級(jí)各類中小學(xué)每年都要進(jìn)行“學(xué)生體質(zhì)健康測(cè)試”,測(cè)試總成績(jī)滿分為100分,規(guī)定測(cè)試成績(jī)?cè)赱85,100]之間為體質(zhì)優(yōu)秀;在[75,85)之間為體質(zhì)良好;在[60,75)之間為體質(zhì)合格;在[0,60)之間為體質(zhì)不合格.現(xiàn)從某校高三年級(jí)的300名學(xué)生中隨機(jī)抽取30名學(xué)生體質(zhì)健康測(cè)試成績(jī),其莖葉圖如下:
 9  1  3  5  6                        
 8  0  1  1  2  2  3  3  3  4  4  6  6  7  7  9
 7  0  5  6  6  7  9                    
 6  4  5  8                          
 5  6                              
(Ⅰ)試估計(jì)該校高三年級(jí)體質(zhì)為優(yōu)秀的學(xué)生人數(shù);
(Ⅱ)根據(jù)以上30名學(xué)生體質(zhì)健康測(cè)試成績(jī),現(xiàn)采用分層抽樣的方法,從體質(zhì)為優(yōu)秀和良好的學(xué)生中抽取5名學(xué)生,再?gòu)倪@5名學(xué)生中選出3人.
(。┣笤谶x出的3名學(xué)生中至少有1名體質(zhì)為優(yōu)秀的概率;
(ⅱ)求選出的3名學(xué)生中體質(zhì)為優(yōu)秀的人數(shù)不少于體質(zhì)為良好的人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,-1),B(4,0),C(2,2).平面區(qū)域D由所有滿足
AP
AB
AC
(1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a5=5,a1=1,則數(shù)列{
1
anan+1
}
的前50項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈R,則“x2-3x<0”是“(x-1)(x-2)≤0成立”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:若a+b+c為偶數(shù),則“自然a、b、c恰有一個(gè)偶數(shù)”時(shí)正確反設(shè)為(  )
A、a、b、c都是奇數(shù)
B、a、b、c都是偶數(shù)
C、a、b、c中至少有兩個(gè)偶數(shù)
D、a、b、c中或都是奇數(shù)或至少有兩個(gè)偶數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案