在平面直角坐標(biāo)系xOy中,拋物線y=x2上異于坐標(biāo)原點(diǎn)O的兩不同動(dòng)點(diǎn)A、B滿足AO⊥BO
(Ⅰ)求證直線A、B恒過(guò)定點(diǎn)(0,1)
(Ⅱ)△AOB的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由.
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)設(shè)出AB的方程,A,B的坐標(biāo),進(jìn)而把直線與拋物線方程聯(lián)立消去y,根據(jù)韋達(dá)定理求得x1+x2和x1x2的表達(dá)式,進(jìn)而利用拋物線方程求得y1y2=的表達(dá)式,進(jìn)而根據(jù)AO⊥BO推斷出x1x2+y1y2=0,求得b,即可求出結(jié)果;
(Ⅱ)S△AOB=
1
2
•1•|x1-x2|=
1
2
k2+4
,即可求出最小值.
解答: (Ⅰ)證明:顯然直線AB的斜率存在,記為k,AB的方程記為:y=kx+b,(b≠0),A(x1,y1),B(x2,y2),
將直線方程代入y=x2得:x2-kx-b=0,則有:
△=k2+4b>0①,x1+x2=k②,x1x2=-b③,
又y1=x12,y2=x22
∴y1y2=b2;
∵AO⊥BO,∴x1x2+y1y2=0,
得:-b+b2=0且b≠0,
∴b=1,
∴直線AB恒過(guò)定點(diǎn)(0,1);
(II)解:S△AOB=
1
2
•1•|x1-x2|=
1
2
k2+4
≥1
當(dāng)且僅當(dāng)k=0時(shí),等號(hào)成立,
∴△AOB的面積存在最小值,存在時(shí)求得最小值1.
點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì),涉及到直線與圓錐線的問(wèn)題一般是聯(lián)立方程,設(shè)而不求,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù)(x∈R),如:[-1,3]=-2,[0,8]=0,[3,4]=3.定義{x}=x-[x],給出如下命題:
①使[x+1]=3成立的x的取值范圍是2≤x<3;
②函數(shù)y={x}的定義域?yàn)镽,值域?yàn)閇0,1];
③{
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=1007;
④設(shè)函數(shù)f(x)=
x-[x]    x≥0
f(x+1),x<0
,則函數(shù)y=f(x)-
1
4
x-
1
4
的不同零點(diǎn)有3個(gè).
其中正確的命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,AB=
3
,BC=1,sinC=
3
cosC,則△ABC的面積為( 。
A、
7
5
B、
11
4
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若P是拋物線x2=4y上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線l1:y=-1,l2:3x+4y+12=0的距離之和的最小值為( 。
A、3
B、4
C、
16
5
D、
19
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某市擬在長(zhǎng)為8km的道路OP的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asin(ωx)(A>0,ω>0),x∈[0,4]的圖象,且圖象的最高點(diǎn)為S(3,2
3
),賽道的后一部分為折線段MNP,為保證參賽運(yùn)動(dòng)員的安全,限定∠MNP=120°.
(1)求A,ω的值和M,P兩點(diǎn)間的距離;
(2)設(shè)∠PMN=θ,試用θ表示賽道MNP的長(zhǎng);            
(3)當(dāng)θ為何值時(shí),折線段賽道MNP最長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是邊長(zhǎng)為1的正三角形,M,N分別是邊AB,AC上的點(diǎn),線段MN過(guò)△ABC的重心G,設(shè)∠MGA=α,α∈[
π
3
,
3
].
(1)當(dāng)α=105°時(shí),求MG的長(zhǎng);
(2)分別記△AGM,△AGN的面積為S1,S2,試將S1,S2表示為α的函數(shù);
(3)求y=
1
S12
+
1
S22
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P(異于原點(diǎn))在y軸上運(yùn)動(dòng),連結(jié)PF,過(guò)點(diǎn)P作PM交x軸于點(diǎn)M,并延長(zhǎng)MP與N,且
PM
PF
=0,|
PN
|=|
PM
|.
(1)求動(dòng)點(diǎn)N的軌跡C的方程;
(2)若A(a,0),a∈R,求使|
AN
|最小的點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(π+α)+cos(
π
2
+α)=-m,求cos(
2
-α)+2sin(2π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(
3
sin
x
4
,1),
b
=(cos
x
4
,cos2
x
4
),f(x)=
a
b

(1)若f(x)=1,求sin(
x
2
+
π
6
)的值;
(2)在△ABC中,若∠B=
π
3
,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案