已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P(異于原點(diǎn))在y軸上運(yùn)動(dòng),連結(jié)PF,過點(diǎn)P作PM交x軸于點(diǎn)M,并延長(zhǎng)MP與N,且
PM
PF
=0,|
PN
|=|
PM
|.
(1)求動(dòng)點(diǎn)N的軌跡C的方程;
(2)若A(a,0),a∈R,求使|
AN
|最小的點(diǎn)N的坐標(biāo).
考點(diǎn):軌跡方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)出動(dòng)點(diǎn)N,則M,P的坐標(biāo)可表示出,利用PM⊥PF,kPMkPF=-1,求得x和y的關(guān)系式,即N的軌跡方程;
(2)設(shè)x=t2,則|
AN
|=
(x-a)2+y2
,利用配方法即可求解.
解答: 解:(1)設(shè)動(dòng)點(diǎn)N(x,y),則M(-x,0),P(0,
y
2
)(x>0),
PM
PF
=0,∴PM⊥PF,∴kPMkPF=-1,即
y
2
x
y
2
-1
=-1
,
∴y2=4x(x>0)即為所求;
(2)設(shè)x=t2,則|
AN
|=
(x-a)2+y2
=
(t2-a)2+4t2
=
5(t2-
a
5
)2+
4
5
a2
,
∴t2=
a
5
時(shí),|
AN
|最。
此時(shí)得:N(
a
5
,±
2
a
5
).
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題,兩個(gè)向量的數(shù)量的運(yùn)算,考查運(yùn)用解析幾何的方法分析問題和解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如輸入的p=20,則輸出的n的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某物體的運(yùn)動(dòng)曲線方程為:S=2t2-3t-1,則該物體在t=3時(shí)的速度為(  )
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線y=x2上異于坐標(biāo)原點(diǎn)O的兩不同動(dòng)點(diǎn)A、B滿足AO⊥BO
(Ⅰ)求證直線A、B恒過定點(diǎn)(0,1)
(Ⅱ)△AOB的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩圓x2+y2=9與x2+y2-8x+6y-8a-25=0存在唯一公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,tan
A+B
2
+tan
C
2
=4,2sinBcosC=sinA.
(1)求角A的大;
(2)若S△ABC=
3
,求邊a的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(a1,a2),
b
=(b1,b2),定義一種向量積
a
?
b
=(a1,a2)?(b1,b2)=(a1b1,a2b2).已知向量
m
=(2,
1
2
),
n
=(
π
3
,0),點(diǎn)P(x0,y0)為y=sinx的圖象上的動(dòng)點(diǎn),點(diǎn)Q(x,y)為y=f(x)的圖象上的動(dòng)點(diǎn),且滿足
OQ
=
m
?
OP
+
n
(其中O為坐標(biāo)原點(diǎn)).
(Ⅰ)請(qǐng)用x0表示
m
?
OP

(Ⅱ)求y=f(x)的表達(dá)式并求它的周期;
(Ⅲ)把函數(shù)y=f(x)圖象上各點(diǎn)的橫坐標(biāo)縮小為原來的
1
4
倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象.設(shè)函數(shù)h(x)=g(x)-t(t∈R),試討論函數(shù)h(x)在區(qū)間[0,
π
2
]內(nèi)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={-1,1},B={x|x2+mx+n=0},B≠∅且B⊆A,求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC中a=
7
b,sinC=2
3
sinB,則A=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案