直線過(guò)橢圓的左焦點(diǎn)和一個(gè)頂點(diǎn),該橢圓的離心率為
A.B.C.D.
左焦點(diǎn)和頂點(diǎn)的坐標(biāo)分別是(),(),都在直線上,所以,所以,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若給定橢圓C:ax2+by2=1(a>0,b>0,ab)和點(diǎn)N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”,
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱直線與橢圓相離、相切、相交),并說(shuō)明理由;
(2)命題:“若點(diǎn)N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫(xiě)出這個(gè)命題的逆命題,判斷此逆命題的真假,說(shuō)明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過(guò)N點(diǎn)任意作一條直線,交橢圓C于A、B,交l于M點(diǎn)(異于A、B),設(shè),,問(wèn)是否為定值?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
      橢圓短軸的左右兩個(gè)端點(diǎn)分別為A,B,直線與x軸、y軸分別交于兩點(diǎn)E,F(xiàn),交橢圓于兩點(diǎn)C,D。
(I)若,求直線的方程;
(II)設(shè)直線AD,CB的斜率分別為,若,求k的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是橢圓的兩個(gè)焦點(diǎn),是橢圓上的任意一點(diǎn),則的最大值是                              (     )
、9        、16     、       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)分別是橢圓的左右焦點(diǎn),若在其右準(zhǔn)線上存在點(diǎn)
使得線段的垂直平分線恰好經(jīng)過(guò),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
已知橢圓的離心率為,長(zhǎng)軸長(zhǎng)為,直線交橢圓于不同的兩點(diǎn)A、B。
(1)求橢圓的方程;
(2)求的值(O點(diǎn)為坐標(biāo)原點(diǎn));
(3)若坐標(biāo)原點(diǎn)O到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動(dòng)點(diǎn),已知|a|+|b|=4.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)點(diǎn)P的軌跡與x軸負(fù)半軸交于點(diǎn)A,過(guò)點(diǎn)F(1,0)的直線交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于橢圓,定義為橢圓的離心率,橢圓離心率的取值范圍是,離心率越大橢圓越“扁”,離心率越小則橢圓越“圓”.若兩橢圓的離心率相等,我們稱兩橢圓相似.已知橢圓與橢圓相似,則的值為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果為橢圓的左焦點(diǎn),、分別為橢圓的右頂點(diǎn)和上頂點(diǎn),為橢圓上的點(diǎn),當(dāng),為橢圓的中心)時(shí),橢圓的離心率為         

查看答案和解析>>

同步練習(xí)冊(cè)答案