9.已知定點P(-1,1),長度為2的線段MN的兩個端點M和N分別在x軸和y軸上滑動且始終滿足$\overrightarrow{PQ}$=$\overrightarrow{PN}$+$\overrightarrow{PM}$,則動點Q的軌跡方程是(x-1)2+(y+1)2=4.

分析 先求出MN的中點A的軌跡方程,再利用$\overrightarrow{PQ}$=$\overrightarrow{PN}$+$\overrightarrow{PM}$,可得$\overrightarrow{PQ}$=2$\overrightarrow{PA}$,確定坐標(biāo)之間的關(guān)系,即可得出結(jié)論.

解答 解:設(shè)MN的中點為A(a,b),則a2+b2=1
設(shè)Q(x,y),則
∵$\overrightarrow{PQ}$=$\overrightarrow{PN}$+$\overrightarrow{PM}$,
∴$\overrightarrow{PQ}$=2$\overrightarrow{PA}$,
∴(x+1,y-1)=2(a+1,b-1),
∴a=$\frac{x-1}{2}$,b=$\frac{y+1}{2}$,
∴($\frac{x-1}{2}$)2+($\frac{y+1}{2}$)2=1
∴(x-1)2+(y+1)2=4,
故答案為:(x-1)2+(y+1)2=4.

點評 本題考查點的軌跡方程的求法,考查圓的方程,考查代入法的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)列{an}的通項為an=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,若Sn=9,則項數(shù)n=99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}的通項是an=3n-2,n∈N*,設(shè)Tn=a1+a2Cn1+a3Cn2+…+anCnn-1+an+1Cnn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若有一個企業(yè),70%的員工收人1萬,25%的員工年收人3萬,5%的員工年收人11萬,則該企業(yè)員工的年收人的平均數(shù)是2萬,中位數(shù)是1萬,眾數(shù)是1萬.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=x1nx的零點為( 。
A.0或1B.1C.(1,0)D.(0,0)或(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(cosx)=cos5x.求:
(1)f(cos$\frac{π}{6}$); 
(2)f($\frac{1}{2}$);   
(3)f(sinx).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$f(-6)+f(log214)=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x∈Z||x|≤2},B={x|x2-2x-8≥0},則A∩(∁RB)=( 。
A.{-2,-1,0,1,2}B.{-1,0,1,2}C.{2}D.{x|-2<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列四個命題中:
①命題:$?x∈R,sinx-cosx=\sqrt{2}$; 
②函數(shù)f(x)=2x-x2有三個零點;
③對?(x,y)∈{(x,y)|4x+3y-10=0},則x2+y2≥4.
④已知函數(shù)$f(x)=x+\frac{1}{x}$,若△ABC中,角C是鈍角,那么f(sinA)>f(cosB)
其中所有真命題的序號是①②③④.

查看答案和解析>>

同步練習(xí)冊答案