cos
π
11
cos
11
cos
11
cos
11
cos
11
的值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值
分析:原式乘以
2sin
π
11
2sin
π
11
依次利用二倍角公式和誘導(dǎo)公式進(jìn)行化簡(jiǎn)整理求得答案.
解答: 解:cos
π
11
cos
11
cos
11
cos
11
cos
11

=
2sin
π
11
cos
π
11
cos
11
cos
11
cos
11
cos
11
2sin
π
11

=
sin
11
cos
11
cos
11
cos
11
cos
11
2sin
π
11

=
1
2
sin
11
cos
11
cos
11
cos
11
2sin
π
11

=
1
4
sin
11
cos
11
cos
11
2sin
π
11

=
1
4
sin(π-
11
)cos
11
cos
11
2sin
π
11

=
1
8
sin
11
cos
11
2sin
π
11

=
1
8
sin(π-
11
)cos
11
2sin
π
11

=
1
16
sin
10π
11
2sin
π
11

=
1
16
sin(π-
π
11
)
2sin
π
11

=
1
16
sin
π
11
2sin
π
11

=
1
32
點(diǎn)評(píng):本題主要考查了三角函數(shù)恒等變換的應(yīng)用.解題的過程巧妙的利用了二倍角公式,完成了化簡(jiǎn)任務(wù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在復(fù)平面內(nèi),若復(fù)數(shù)z1,z2對(duì)應(yīng)的向量分別是
OA
OB
,則復(fù)數(shù)z1+z2所對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=
1
3
,則cos2
π
4
-α)=( 。
A、
1
18
B、
1
9
C、
2
9
D、
17
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a>0,且2a,1,a2+3按某種順序排列成等差數(shù)列.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若等差數(shù)列{an}的首項(xiàng)和公差都為a,等比數(shù)列{bn}的首項(xiàng)和公比都為a,數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn,Tn,且
Tn+2
2n
>Sn-238,求滿足條件的自然數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=λx(1-x)(λ>0,x∈[0,1]),若1,sinα,f(sin
α
2
2成等比數(shù)列.
(1)求λ的值;
(2)試探求函數(shù)g(x)=f(cos
x
2
2的性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=4x和C2:x2=2py(p>0)的焦點(diǎn)分別為F1,F(xiàn)2,C1,C2交于O,A兩點(diǎn)(O為坐標(biāo)原點(diǎn)),且F1F2⊥OA.
(1)求拋物線C2的方程;
(2)過點(diǎn)O的直線交C1的下半部分于點(diǎn)M,交C2的左半部分于點(diǎn)N,點(diǎn)P坐標(biāo)為(-1,-1),求△PMN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)(x∈R)滿足f(2x)=2x+1+1,定義數(shù)列{an},a1=1,an+1=f(an)-1(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1,且
Sn+1
-
Sn
=1(n∈N*).
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令cn=
bn
an
(n∈N+),求{cn}的前n項(xiàng)和Tn;
(3)數(shù)列{an}中是否存在三項(xiàng)am,an,ak(m<n<k,m,n,k∈N*)使am,an,ak成等差數(shù)列,若存在,求出m,n,k的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖所示是函數(shù)y=Asin(ωx+φ)的部分圖象.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求不等式y(tǒng)≥2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程f(x)=mx2+2(m+1)x+m+3=0至少有一個(gè)負(fù)根,則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案