在△ABC中,bsinA=
3
acosB.
(Ⅰ)求角B的大;
(Ⅱ)若b=3,sinC=2sinA,求a,c的值.
考點:正弦定理
專題:解三角形
分析:(Ⅰ)在△ABC中,由條件利用正弦定理求得tanB=
3
,由此求得 B 的值.
(Ⅱ)由條件利用正弦定理得c=2a,再由余弦定理b2=a2+c2-2ac•cosB,求得a的值,可得c=2a的值,求解即可.
解答: 解:(Ⅰ)在△ABC中,∵bsinA=
3
acosB,
由正弦定理可得 sinBsinA=
3
sinAcosB,
故有tanB=
3
,
∴B=
π
3

(Ⅱ)∵sinC=2sinA,∴c=2a,
由余弦定理b2=a2+c2-2ac•cosB,即9=a2+4a2-2a•2a•cos
π
3
,
解得a=
3
,c=2a=2
3
點評:本題主要考查正弦定理、余弦定理的應用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(Ⅰ) 當BE=2,是否在折疊后的AD上存在一點P,且
AP
PD
,使得CP∥平面ABEF?若存在,求出λ的值;若不存在,說明理由;
(Ⅱ) 設BE=x,問當x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
(1)
1-2sinxcosx
cos2x-sin2x
=
1-tanx
1+tanx
;
(2)(cosβ-1)2+sin2β=2-2cosβ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y∈R,若2x+(5-y)i 和3x-3-(y+3)i是共軛復數(shù),且復數(shù)Z=x+yi,求|Z|和復數(shù)Z的共軛復數(shù)
.
Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b>0,求證:
a+b
-
a
a
-
a-b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種商品每件進價9元,售價20元,每天可賣出69件.若售價降低,銷售量可以增加,且售價降低x(0≤x≤11)元時,每天多賣出的件數(shù)與x2+x成正比.已知商品售價降低3元時,一天可多賣出36件.
(Ⅰ)試將該商品一天的銷售利潤表示成x的函數(shù);
(Ⅱ)該商品售價為多少元時一天的銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

第16屆亞運會于2010年11月12日至27日在中國廣州進行,為了做好接待工作,組委會招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運動,其余不喜愛.
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表:
喜愛運動不喜愛運動總計
1016
614
總計30
(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與喜愛運動有關?
(3)如果從喜歡運動的女志愿者中(其中恰有4人會外語),抽取2名負責翻譯工作,則抽出的志愿者中2人都能勝任翻譯工作的概率是多少?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)g(x)=ax3+bx2+cx及其導函數(shù)g'(x)的圖象如下:y=g′(x)y=g(x).

(1)求g(x)的解析式;
(2)若f(x)=g(x)-m,g′(x)在區(qū)間[2,+∞)上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將進貨單價為80元的商品按90元一個售出時,能賣出400個,已知這種商品每個漲價1元,其銷售量就減少10個,為了取得最大利潤,每個售價應定為多少元?

查看答案和解析>>

同步練習冊答案