18.探究C${\;}_{n}^{0}$6n+C${\;}_{n}^{1}$61+C${\;}_{n}^{2}$62+…+C${\;}_{n}^{n-1}$6n-1除以8的余數(shù)是多少?(n∈N*

分析 根據(jù)題意,把C${\;}_{n}^{0}$6n+C${\;}_{n}^{1}$61+C${\;}_{n}^{2}$62+…+C${\;}_{n}^{n-1}$6n-1表示成(8-1)n-1的形式,再利用二項(xiàng)式展開(kāi)式,求出除以8的余數(shù).

解答 解:∵C${\;}_{n}^{0}$6n+C${\;}_{n}^{1}$61+C${\;}_{n}^{2}$62+…+C${\;}_{n}^{n-1}$6n-1=${C}_{n}^{0}$60+${C}_{n}^{1}$61+${C}_{n}^{2}$62+…+${C}_{n}^{n}$6n-1
=(1+6)n-1
=(8-1)n-1,
利用二項(xiàng)式展開(kāi),得
${C}_{n}^{0}$8n+${C}_{n}^{1}$8n-1(-1)+${C}_{n}^{2}$8n-2(-1)2+…+${C}_{n}^{n-1}$8(-1)n-1+${C}_{n}^{n}$(-1)n-1,
除了最后兩項(xiàng),其余各項(xiàng)都能被8整除,
所以余數(shù)是${C}_{n}^{n}$(-1)n-1;
當(dāng)n為奇數(shù)時(shí),余數(shù)為8+(-1-1)=6,
當(dāng)n為偶數(shù)時(shí),余數(shù)為(-1)n-1=0.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的靈活應(yīng)用問(wèn)題,也考查了整除原理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥1}\\{y-2x+1≤0}\\{x+y-8≤0}\end{array}\right.$,則z=x-y的最小值為( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=3x+1+$\frac{12}{x^2}$(x>0)的最小值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的是(  )
A.y=($\frac{1}{2}$)-xB.y=sinx2C.y=x|x|D.y=ln|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知在($\root{3}{x}$-$\frac{3}{\root{3}{x}}$)n的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng),則含x2的項(xiàng)的二項(xiàng)式系數(shù)為45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知m=loga$\frac{3}{2}$+loga2,n=logb9-logb3,若m<n,則下列結(jié)論中,不可能成立的是( 。
A.0<b<a<1B.0<a<b<1C.a>b>1D.0<a<1<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x2+lnx-ax,且f(x)在(0,1)上是增函數(shù),g(x)=e2x-aex-1
(1)求實(shí)數(shù)a的取值范圍;
(2)求g(x)在區(qū)間[0,ln3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在數(shù)軸上表示不等式組$\left\{\begin{array}{l}{1+x>0}\\{2x-4≤0}\end{array}\right.$的解集,正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.命題“?x≥0,|x|+x≥0”的否定是(  )
A.?x≥0,|x0|+x0<0B.?x<0,|x|+x≥0C.?x0≥0,|x0|+x0<0D.?x0<0,|x|+x≥0

查看答案和解析>>

同步練習(xí)冊(cè)答案