考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可判斷函數(shù)的單調(diào)性.
解答:
解:函數(shù)的導(dǎo)數(shù)為f′(x)=x
2+2x+a,
若△=4-4a≤0,即a≥1,此時f′(x)=x
2+2x+a≥0恒成立,此時函數(shù)單調(diào)遞增.
若△=4-4a>0,即a<1時,f′(x)=x
2+2x+a=0,解得x=
=-1±,
當(dāng)x>
-1+或x
<-1-時,f′(x)>0,此時函數(shù)單調(diào)遞增,
當(dāng)
-1-<x<-1
+時,f′(x)<0,此時函數(shù)單調(diào)遞減,
故此時函數(shù)的單調(diào)遞減區(qū)間為(
-1-,-1
+),
遞增區(qū)間為(-1
+,+∞),和(-∞,
-1-).
點評:本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,注意討論a的取值范圍對函數(shù)導(dǎo)數(shù)的影響.