設(shè)集合A={(x,y)|y=x2+ax+2},B={(x,y)|y=x+1,0≤x≤2},A∩B≠∅,求實(shí)數(shù)a的取值范圍.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:計(jì)算題,集合
分析:問題轉(zhuǎn)化為方程y=x2-ax+2與方程y=x+1在0≤x≤2范圍內(nèi)有解.
解答: 解:問題轉(zhuǎn)化為方程y=x2-ax+2與方程y=x+1在0≤x≤2范圍內(nèi)有解.
則:令g(x)=x2-(a+1)x+1=0在0≤x≤2內(nèi)有根.
所以①0≤
a+1
2
≤2;②g(0)≥0;③g(2)≥0;④△=(a+1)2-4≥0
解上四個不等式得:1≤a≤
3
2
點(diǎn)評:本題考查集合的包含關(guān)系判斷及應(yīng)用,考查學(xué)生分析解決問題的能力,問題轉(zhuǎn)化為方程y=x2-ax+2與方程y=x+1在0≤x≤2范圍內(nèi)有解是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)高三文科班學(xué)生參加了數(shù)學(xué)與地理水平測試,學(xué)校從測試合格的學(xué)生中隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計(jì)分析.抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)绫硭荆撼煽兎譃閮?yōu)秀、良好、及格三個等級,橫向、縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42人.
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
(Ⅰ)若在該樣本中,數(shù)學(xué)成績優(yōu)秀率為30%,求a,b的值;
(Ⅱ)若樣本中a≥10,b≥8,求在地理成績及格的學(xué)生中,數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知幾何體的底面ABCD為正方形,AC∩DB=N,PD⊥面ABCD,EC∥PD,PD=CD=2EC=2.
(Ⅰ)以
AD
為正規(guī)方向,求該幾何體正視圖的面積.
(Ⅱ)求異面直線AC與PE所成角的余弦值;
(Ⅲ)平面PBD與平面PBE是否垂直?若垂直,請加以證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,E,P,B,C為圓O上的四點(diǎn),直線PB,PC,BC分別交直線EO于M,N三點(diǎn),且PM=PN.
(Ⅰ)求證:∠POA+∠BAO=90°;
(Ⅱ)若BC∥PE,求
PE
PO
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
4x+2
,求f(x)+f(1-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,以原點(diǎn)o為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知射線l:θ=
π
4
與曲線C:
x=t+1
y=(t-1)2
(t為參數(shù)),相交于A、B兩點(diǎn).
(1)寫出射線l的參數(shù)方程和曲線C的直角坐標(biāo)系方程;
(2)求線段AB的中點(diǎn)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a2-a1=2,且3a2為9a1和a3的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的首項(xiàng)和公比;
(Ⅱ)設(shè)bn=an+log3an,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,其中a1=1,Sn=3Sn-1+1(n>1,n∈N*),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)P是正方體棱上一點(diǎn)(不包括棱的端點(diǎn)),|PA|+|PC1|=m,
①若m=2,則滿足條件的點(diǎn)P的個數(shù)為
 

②若滿足|PA|+|PC1|=m的點(diǎn)P的個數(shù)為6,則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案