A. | (-2,1)或(2,-1) | B. | (-1,2)或(1,-2) | ||
C. | (-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)或($\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$) | D. | (-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$) |
分析 由已知向量的坐標求出$\overrightarrow$-$\overrightarrow{a}$的坐標,然后由單位向量概念及兩向量垂直的坐標表示列方程組求解.
解答 解:∵$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,-2),
∴$\overrightarrow-\overrightarrow{a}=(-1,-2)$,
設(shè)與向量$\overrightarrow$-$\overrightarrow{a}$垂直的單位向量為(x,y),
則$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{-x-2y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{2\sqrt{5}}{5}}\\{y=\frac{\sqrt{5}}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{2\sqrt{5}}{5}}\\{y=-\frac{\sqrt{5}}{5}}\end{array}\right.$.
∴與向量$\overrightarrow$-$\overrightarrow{a}$垂直的單位向量為:(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$).
故選:D.
點評 本題考查單位向量的概念,考查了兩向量垂直的坐標表示,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{9}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{4}+\frac{y^2}{9}=1$ | C. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ | D. | $\frac{x^2}{2}+\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | -18 | C. | 36 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“?x∈R,x2≥0”的否定為“?x0∈R,x2<0” | |
B. | “a>b”是“ac2>bc2”的必要不充分條件 | |
C. | “若x2-6x+5≠0,則x≠1”是真命題 | |
D. | 命題p:A成立,命題q:B成立,則命題¬p∨¬q表示A,B至少有一個成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com