【題目】已知函數(shù)f(x)=ex , g(x)= x2+x+1,則與f(x),g(x)的圖象均相切的直線方程是

【答案】y=x+1
【解析】解:設(shè)所求直線l與函數(shù)f(x)的圖象相切,切點為(t,et),

函數(shù)f(x)=ex,導(dǎo)數(shù)為f′(x)=ex,

則直線l的方程為y﹣et=et(x﹣t),即y=etx+et(1﹣t),

直線l與函數(shù)g(x)的圖象相切的充要條件是關(guān)于x的方程etx+et(1﹣t)= x2+x+1,

x2+(1﹣et)x+1﹣et(1﹣t)=0有兩個相等的實數(shù)根,

∴△=e2t﹣2et+1﹣2+2et(1﹣t)=0,

化為e2t﹣2tet﹣1=0,

設(shè)φ(t)=e2t﹣2tet﹣1,

φ′(t)=2e2t﹣2(t+1)et=2et(et﹣t﹣1),

由h(t)=et﹣t﹣1的導(dǎo)數(shù)為h′(t)=et﹣1,

當(dāng)t>0時,h(t)遞增;當(dāng)t<0時,h(t)遞減.

可得h(t)≥h(0)=0,

即有φ′(t)≥0,即φ(t)在R上遞增,

由φ(0)=0,e2t﹣2tet﹣1=0的解為t=0,

存在唯一一條直線l與函函數(shù)f(x)與g(x)的圖象均相切,

其方程為y=x+1.

所以答案是:y=x+1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,過左焦點F且垂直于x軸的弦長為1.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點P(m,0)為橢圓C的長軸上的一個動點,過點P且斜率為 的直線l交橢圓C于A,B兩點,問:|PA|2+|PB|2是否為定值?若是,求出這個定值并證明,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖像時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

5

0

-5

0

1)求出實數(shù);

2)求出函數(shù)的解析式;

(3)將圖像上所有點向左平移個單位長度,得到圖像,求的圖像離原點最近的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)旅游紀(jì)念品的工廠,擬在2017年度進行系列促銷活動,經(jīng)市場調(diào)查和測算,該紀(jì)念品的年銷售量 (單位:萬件)與年促銷費用 (單位:萬元)之間滿足 成反比例.若不搞促銷活動,紀(jì)念品的年銷售量只有1萬件.已知加工廠2017年生產(chǎn)紀(jì)念品的固定投資為3萬元,沒生產(chǎn)1萬件紀(jì)念品另外需要投資32萬元.當(dāng)工廠把每件紀(jì)念品的售價定為“年平均每件生產(chǎn)成本的1.5倍”與“年平均每件所占促銷費的一半”之和時,則當(dāng)年的產(chǎn)量和銷量相等.(利潤=收入-生產(chǎn)成本-促銷費用)
(Ⅰ)請把該工廠2017年的年利潤 (單位:萬元)表示成促銷費 (單位:萬元)的函數(shù);
(Ⅱ)試問:當(dāng)2017年的促銷費投入多少萬元時,該工程的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,當(dāng) 時,函數(shù) 取得極值 .
(Ⅰ)求函數(shù) 的解析式;
(Ⅱ)若方程 有3個不等的實數(shù)解,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只小船以的速度由南向北勻速駛過湖面,在離湖面高20米的橋上,一輛汽車由西向東以的速度前進(如圖),現(xiàn)在小船在水平面上的點以南的40米處,汽車在橋上點以西的30米處(其中水平面),請畫出合適的空間圖形并求小船與汽車間的最短距離.(不考慮汽車與小船本身的大小)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是四棱錐的平面展開圖,其中四邊形ABCD為正方形,E,F,G,H分別為PA,PD,PC,PB的中點,在此幾何體中,給出下面四個結(jié)論中錯誤的是( )

A. 平面平面ABCD

B. 直線BE,CF相交于一點

C. EF//平面BGD

D. 平面BGD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù), 是偶函數(shù).

1的值;

2說明函數(shù)的單調(diào)性;若對任意的,不等式恒成立,求實數(shù)的取值范圍;

3設(shè),若存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案