二進制數(shù)定義為“逢二進一”,如(1101)2表示二進制數(shù),將它轉(zhuǎn)換成十進制形式,是1×23+1×22+0×21+1×20=13,即(1101)2轉(zhuǎn)換成十進制數(shù)是13,那么類似可定義k進制數(shù)為“逢k進一”,則8進制數(shù)(102)8轉(zhuǎn)換成十進制數(shù)是
 
考點:整除的定義
專題:數(shù)系的擴充和復(fù)數(shù)
分析:根據(jù)十進制與八進制的相互轉(zhuǎn)換方法,把八進制數(shù)轉(zhuǎn)化成十進制數(shù),把八進制的個位乘以80,向前和向后只有8的指數(shù)變化,做法類似,最后相加求和即可.
解答: 解:由題意知,8進制數(shù)(102)8轉(zhuǎn)換成十進制數(shù)是:
1×82+0×81+2×80
=64+0+2
=66.
故答案為:66.
點評:本題主要考查了十進制與二進制的相互轉(zhuǎn)換,屬于基礎(chǔ)題,解答此題的關(guān)鍵是要熟練地掌握其轉(zhuǎn)化方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,A={(x,y)|y=ax+b,x∈Z},B={(x,y)|y=3x2+15,x∈Z},C={(x,y)|x2+y2≤144}.是否存在a,b,使得A∩B≠∅,且(a,b)∈C?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知向量
a
,
b
滿足|
a
|=2,丨
b
丨=1,(
b
-2
a
)丄
b
,則|
a
+
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,D為棱AA1的中點.若AA1=4,AB=2,則三棱錐A1-BC1D的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:“若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列bn=
na1a2an
,n∈N*也是等比數(shù)列,類比這一性質(zhì),等差數(shù)列也有類似性質(zhì):“若數(shù)列{an}是等差數(shù)列,則數(shù)列bn=
 
也是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
(x>0),若將函數(shù)圖象繞原點逆時針旋轉(zhuǎn)α(α∈(0,π])角后得到的函數(shù)y=g(x)存在反函數(shù),則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1),
b
=(-1,3),若存在
c
,使得
a
c
=4,
b
c
=9,則向量
c
的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
x-1, x≥2
1, x<2
,g(x)=x2-x(x∈R),則方程f[g(x)]=x的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(x+1),x∈[0,2π]的圖象與直線y=
1
3
的交點的橫坐標之和為
 

查看答案和解析>>

同步練習(xí)冊答案