如圖,在△中,∠ 是角平分線,是△的外接圓。

⑴求證:是⊙的切線;
⑵如果,求的長。
(1)只要證明圓心與點E的連線與半徑OE垂直即可。
(2)在第一問的基礎(chǔ)上,結(jié)合切割線定理來證明。

試題分析:解:(1)  

所以AC是圓O的切線  (5分)
(2)設(shè)OD=x,則, 解得x=3
,得BC=4  .(10分)
點評:切線長定理,以及切點的概念的理解和運用,是解決的關(guān)鍵所在,同時要利用相似比得到線段的長度問題,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖AB為圓O直徑,P為圓O外一點,過P點作PC⊥AB,垂是為C,PC交圓O于D點,PA交圓O于E點,BE交PC于F點。

(I)求證:∠PFE=∠PAB (II)求證:CD2=CF·CP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明4-1)已知⊙O1和⊙O2交于點C和D,⊙O1上的點P處的切線交⊙O2于A、B點,交直線CD于點E,M是⊙O2上的一點,若PE=2,EA=1,AMB=30o,那么⊙O2的半徑為       ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)
如圖3,的直徑,的切線,交于點,若,,則的長為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
如圖,AD是⊙O的直徑,AB是⊙O的切線,M, N是圓上兩點,直線MNAD的延長線于點C,交⊙O的切線于B,BMMNNC=1,求AB的長和⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直徑AB=2,C是圓O上的一點,連接BC并延長至D, 使|CD|=|BC|,若ACOD的交點P,,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知是圓的切線,切點為是圓的直徑,與圓交于點,,圓的半徑是,那么

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選做題)15.(幾何證明選講選做題)
如圖,是半圓的直徑,點在半圓上,,且,設(shè),則=________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)
如圖,已知的兩條直角邊,的長分別為,,以為直徑的圓

交于點,則     .

查看答案和解析>>

同步練習(xí)冊答案