【題目】已知數(shù)列的前項(xiàng)和為,,且(),數(shù)列滿足,,對(duì)任意,都有;
(1)求數(shù)列、的通項(xiàng)公式;
(2)令,若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
【答案】(1),;(2);
【解析】
(1)利用,再寫一式,兩式相減,再利用累乘法即可求數(shù)列的通項(xiàng)公式;由題意判斷數(shù)列為等比數(shù)列,直接寫出通項(xiàng)公式; (2)利用錯(cuò)位相減法求數(shù)列的和,在將不等式轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),利用函數(shù)的性質(zhì),即可確定實(shí)數(shù)的取值范圍.
(1)因?yàn)?/span>,所以當(dāng)時(shí),,兩式相減得,
所以,即,
所以,
滿足上式,故數(shù)列的通項(xiàng)公式.
由題意知是以為首項(xiàng),為公比的等比數(shù)列,所以.
(2)因?yàn)?/span>①,
所以②,
由①②得
所以.
又,所以不等式
即為,即恒成立,
構(gòu)造函數(shù)(),
當(dāng)時(shí),恒成立,則滿足條件;
當(dāng)時(shí),由二次函數(shù)性質(zhì)知不恒成立;
當(dāng)時(shí),由于,則在上單調(diào)遞減,恒成立,則滿足條件,
綜上所述,實(shí)數(shù)的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),,其中m是不等于零的常數(shù).
(1)時(shí),直接寫出的值域;
(2)求的單調(diào)遞增區(qū)間;
(3)已知函數(shù),,定義:,,,,其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.例如:,,則,,,.當(dāng)時(shí),恒成立,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器專賣店銷售某種型號(hào)的空調(diào),記第天(,)的日銷售量為(單位;臺(tái)).函數(shù)圖象中的點(diǎn)分別在兩條直線上,如圖,該兩直線交點(diǎn)的橫坐標(biāo)為,已知時(shí),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的解析式;
(2)求的值及該店前天此型號(hào)空調(diào)的銷售總量;
(3)按照經(jīng)驗(yàn)判斷,當(dāng)該店此型號(hào)空調(diào)的銷售總量達(dá)到或超過(guò)臺(tái),且日銷售量仍持續(xù)增加時(shí),該型號(hào)空調(diào)開(kāi)始旺銷,問(wèn)該店此型號(hào)空調(diào)銷售到第幾天時(shí),才可被認(rèn)為開(kāi)始旺銷?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的圓錐的體積為,圓的直徑,點(diǎn)C是的中點(diǎn),點(diǎn)D是母線PA的中點(diǎn).
(1)求該圓錐的側(cè)面積;
(2)求異面直線PB與CD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線、的極坐標(biāo)方程;
(2)射線:與曲線,分別交于點(diǎn),(且點(diǎn),均異于原點(diǎn)),當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為、,短軸的兩個(gè)端點(diǎn)分別是、.
(1)若為等邊三角形,求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓的短軸長(zhǎng)為,過(guò)點(diǎn)的直線與橢圓相交于、兩點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某傳動(dòng)裝置由兩個(gè)陀螺,組成,陀螺之間沒(méi)有滑動(dòng),每個(gè)陀螺都由具有公共軸的圓錐和圓柱兩個(gè)部分構(gòu)成,每個(gè)圓柱的底面半徑和高都是相應(yīng)圓錐底面半徑的,且,的軸相互垂直,它們相接觸的直線與的軸所成角,若陀螺中圓錐的底面半徑為();
(1)求陀螺的體積;
(2)當(dāng)陀螺轉(zhuǎn)動(dòng)一圈時(shí),陀螺中圓錐底面圓周上一點(diǎn)轉(zhuǎn)動(dòng)到點(diǎn),求與之間的距離;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是奇函數(shù)(其中,)
(1)求的值;
(2)討論的單調(diào)性;
(3)當(dāng)的定義域區(qū)間為時(shí),的值域?yàn)?/span>,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一塊長(zhǎng)方形區(qū)域,,,在邊的中點(diǎn)處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角始終為,設(shè),探照燈照射在長(zhǎng)方形內(nèi)部區(qū)域的面積為.
(1)當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),求的最大值;
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個(gè)來(lái)回”(自轉(zhuǎn)到,再回到,稱“一個(gè)來(lái)回”,忽略在及處所用的時(shí)間),且轉(zhuǎn)動(dòng)的角速度大小一定,設(shè)邊上有一點(diǎn),且,求點(diǎn)在“一個(gè)來(lái)回”中被照到的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com