1.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=3,$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為50°,則$\overrightarrow{AB}$與($\overrightarrow{AB}$-$\overrightarrow{AC}$)的夾角大小為65°.

分析 由題意可得△ABC為等腰三角形,A=50°,B=65°,C=65°,$\overrightarrow{AB}$與($\overrightarrow{AB}$-$\overrightarrow{AC}$)的夾角大小,即為角B.

解答 解:∵已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=3,$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為50°,
故△ABC為等腰三角形,A=50°,B=65°,C=65°.
如圖,$\overrightarrow{AB}$與($\overrightarrow{AB}$-$\overrightarrow{AC}$)的夾角大小,即$\overrightarrow{AB}$ 與$\overrightarrow{CB}$所成的角,即為角B,
故答案為:65°.

點(diǎn)評 本題主要考查兩個(gè)向量的加減法的法則,以及其幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知冪函數(shù)$f(x)={x^{-2{m^2}+m+3}}$(m∈Z)為偶函數(shù),且在(0,+∞)上是增函數(shù).
(1)求f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,a≠1)在區(qū)間(2,3)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知奇函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)集R,且f(x)在(-∞,+∞)上是增函數(shù),是否存在這樣的實(shí)數(shù)m,使f(4m-2mcosθ)-f(4-2cos2θ)>f(0)對所有的θ∈[0,$\frac{π}{2}$]均成立?若存在,求出適合條件的實(shí)數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點(diǎn)A(2,5),直線l1:x+1=0,l2:x+y-3=0,根據(jù)下列條件,分別求△ABC的邊BC所在直線的方程:
(1)11、l2分別是邊AB、AC上的高所在直線的方程;
(2)11、l2分別是邊AB、AC上的中線所在直線的方程;
(3)11、l2分別是∠B、∠C的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知F1,F(xiàn)2分別是雙曲線3x2-5y2=75的左右焦點(diǎn),P是雙曲線上的一點(diǎn),且∠F1PF2=120°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知函數(shù)f(x)=$\frac{1}{2}$x-$\frac{1}{4}$sinx-$\frac{\sqrt{3}}{4}$cosx的圖象在點(diǎn)A(x0,f(x0))處的切線斜率為$\frac{1}{2}$,求tanx0的值.
(2)對于正整數(shù)n,設(shè)曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,求數(shù)列{$\frac{{a}_{n}}{n+1}$}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在四面體ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,則四面體ABCD的外接球的表面積為$\frac{77π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,且,$\frac{sinβ}{sinα}$=cos(α+β),α+β≠$\frac{π}{2}$,則tanβ的最大值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.從邊長為10cm×16cm的矩形紙板的四角截去四個(gè)相同的小正方形,做成一個(gè)無蓋的盒子,則盒子容積的最大值為( 。
A.160 cm3B.144cm3C.72cm3D.12 cm3

查看答案和解析>>

同步練習(xí)冊答案