16.已知A(-5,0),B(5,0),直線AM、BM相交于點(diǎn)M,且它們的斜率之積是$\frac{4}{9}$,試求點(diǎn)M的軌跡方程,并由點(diǎn)M的軌跡方程判斷軌跡的形狀.

分析 設(shè)出交點(diǎn)M的坐標(biāo),寫出兩直線的斜率,直接由斜率之積是$\frac{4}{9}$,列式化簡(jiǎn).

解答 解:設(shè)M(x,y),則
AM斜率k1=$\frac{y}{x+5}$,BM斜率k2=$\frac{y}{x-5}$.
∵斜率之積是$\frac{4}{9}$,
∴$\frac{y}{x+5}$•$\frac{y}{x-5}$=$\frac{4}{9}$(x≠±5),
化簡(jiǎn)整理得化簡(jiǎn),得4x2-9y2=100(x≠±5)
∴M的軌跡是以原點(diǎn)為中心,焦點(diǎn)在x軸上的雙曲線(除去實(shí)軸兩個(gè)端點(diǎn)).

點(diǎn)評(píng) 本題重點(diǎn)考查軌跡方程的求解,解題的關(guān)鍵是正確表示出直線AM、BM的斜率,利用條件建立方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.從{1,2,3,4,5,6}中任取兩個(gè)不同的數(shù)m,n(m>n),則$\frac{n}{m}$能夠約分的概率為$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是橢圓$\frac{{x}^{2}}{4}$+y2=1上兩點(diǎn),若過點(diǎn)A,B且斜率分別為-$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的兩直線交于點(diǎn)P,且直線OA與直線OB的斜率之積為-$\frac{1}{4}$,E($\sqrt{6}$,0),則|PE|的最小值為2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)隨機(jī)變量X服從正態(tài)分布N(μ,σ2)(σ>0),若P(X<-1)+P(X<0)=1,則μ的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.存在實(shí)數(shù)x使得不等式|x+3|+|x-1|≤22a-3•2a成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-1]∪[4,+∞)B.[2,+∞)C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)A(-1,0),B(5,6),P(3,4),且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,則λ=(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在直角坐標(biāo)系中,已知A(-1,3),$\overrightarrow{AB}$=(6.-2),則點(diǎn)B的坐標(biāo)為(5,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x、y滿足|x-1|+|y|≤a(a>0),若x=2x+y的最大值為3,則z的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.用適當(dāng)?shù)募戏?hào)填空.
(1)(1,2)∈{(x,y)|y=x+1};
(2)2$+\sqrt{5}$∉{x|x≤2$+\sqrt{3}$};
(3){-1,1}?{x|x3-x=0}.

查看答案和解析>>

同步練習(xí)冊(cè)答案