16.已知雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,拋物線C2的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線C1的焦點(diǎn),若雙曲線C1與拋物線C2的交點(diǎn)P滿足PF2⊥F1F2,則雙曲線C1的離心率為$\sqrt{2}$+1.

分析 先設(shè)出拋物線方程,進(jìn)而根據(jù)題意可得p與a和c的關(guān)系,把拋物線方程與雙曲線方程聯(lián)立,把x=c,y2=4cx,代入整理可得答案.

解答 解:設(shè)拋物線方程為y2=2px,依題意可知$\frac{p}{2}$=c,
∴p=2c,
拋物線方程與雙曲線方程聯(lián)立得$\frac{{x}^{2}}{{a}^{2}}$-$\frac{4cx}{^{2}}$=1,
把x=c,代入整理得e4-6e2+1=0
解得e=$\sqrt{2}$+1,
故答案為:$\sqrt{2}$+1.

點(diǎn)評(píng) 本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用題設(shè)的已知條件找到a和c的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知A為不等式組$\left\{\begin{array}{l}x≤0\\ y≥0\\ y-x≤2\end{array}\right.$表示的平面區(qū)域,則當(dāng)a從-1連續(xù)變化到1時(shí),動(dòng)直線x+y=a掃過A中的那部分區(qū)域的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖:點(diǎn)E、F、G、H分別是空間四邊形的邊AB、BC、CD、DA上的點(diǎn),且直線EH與直線FG交于點(diǎn)O,求證:B、D、O三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)y=($\frac{2}{3}$)x,當(dāng)x∈(0,+∞)時(shí),y的取值范圍是( 。
A.(0,$\frac{2}{3}$)B.(0,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)當(dāng)tanα=3,求cos2α-3sinαcosα的值;
(2)角α終邊上的點(diǎn)P與A(a,2a)關(guān)于x軸對(duì)稱(a>0),角β終邊上的點(diǎn)Q與A關(guān)于直線y=x對(duì)稱,求sinα•cosα+sinβ•cosβ+tanα•tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.畫出函數(shù)y=1+2cos2x,x∈[0,π]的簡(jiǎn)圖,并求使y≥0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)a≥0,若函數(shù)y=cos2x-asinx+b的值域?yàn)閇-4,0].
(1)試求a與b的值;
(2)求出使y取得最大值、最小值時(shí)的x值;
(3)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(n)=sin$\frac{nπ}{4}$(n∈Z),那么f(1)+f(2)+…+f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知22x-25=2x+2,則lg(x2+1)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案