A. | 5 | B. | 7 | C. | 9 | D. | 11 |
分析 設(shè)等差數(shù)列{an}有奇數(shù)項2k-1,(k∈N*).公差為2d.由于奇數(shù)項和為36,偶數(shù)項和為30,可得36=a1+a3+…+a2k+1,30=a2+a4+…+a2k,分別相加相減即可得出.
解答 解:設(shè)等差數(shù)列{an}有奇數(shù)項2k-1,(k∈N*).公差為2d.
∵奇數(shù)項和為36,偶數(shù)項和為30,
∴36=a1+a3+…+a2k+1,
30=a2+a4+…+a2k,
∴$66=\frac{(2k+1)({a}_{1}+{a}_{2k+1})}{2}$=(2k+1)ak+1,6=a2k+1-kd=a1+kd=ak+1,
∴11=2k+1=n,
故選:D.
點評 本題考查了等差數(shù)列的通項公式性質(zhì)及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{24}$ | B. | $\frac{1}{23}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在[-π,-$\frac{π}{2}$]上是減函數(shù),在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù) | |
B. | 在[-π,0]上是減函數(shù),在[0,$\frac{π}{2}$]上是增函數(shù) | |
C. | 在[-π,-$\frac{π}{2}$]上是增函數(shù),在[-$\frac{π}{2}$,$\frac{π}{2}$]上是減函數(shù) | |
D. | 在[-π,0]上是增函數(shù),在[0,$\frac{π}{2}$]上是減函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com