【題目】已知函數(shù) (m>0)的最大值為2.
(1)求函數(shù),f(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,C=60°,c=3,且 ,求△ABC的面積.
【答案】
(1)解:f(x)=msinx+ cosx= sin(x+θ)(其中sinθ= ,cosθ= ),
∴f(x)的最大值為 ,
∴ =2,
又m>0,∴m= ,
∴f(x)=2sin(x+ ),
令2kπ+ ≤x+ ≤2kπ+ (k∈Z),解得:2kπ+ ≤x≤2kπ+ (k∈Z),
則f(x)在[0,π]上的單調(diào)遞減區(qū)間為[ ,π]
(2)解:設(shè)△ABC的外接圓半徑為R,由題意C=60°,c=3,得 = = = =2 ,
化簡f(A﹣ )+f(B﹣ )=4 sinAsinB,得sinA+sinB=2 sinAsinB,
由正弦定理得: + =2 × ,即a+b= ab①,
由余弦定理得:a2+b2﹣ab=9,即(a+b)2﹣3ab﹣9=0②,
將①式代入②,得2(ab)2﹣3ab﹣9=0,
解得:ab=3或ab=﹣ (舍去),
則S△ABC= absinC=
【解析】:(1)將f(x)解析式利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由正弦函數(shù)的值域表示出f(x)的最大值,由已知最大值為2列出關(guān)于m的方程,求出方程的解得到m的值,進(jìn)而確定出f(x)的解析式,由正弦函數(shù)的遞減區(qū)間為[2kπ+ ,2kπ+ ](k∈Z),列出關(guān)于x的不等式,求出不等式的解集即可得到f(x)在[0,π]上的單調(diào)遞減區(qū)間;(2)由(1)確定的f(x)解析式化簡f(A﹣ )+f(B﹣ )=4 sinAsinB,再利用正弦定理化簡,得出a+b= ab①,利用余弦定理得到(a+b)2﹣3ab﹣9=0②,將①代入②求出ab的值,再由sinC的值,利用三角形的面積公式即可求出三角形ABC的面積.
【考點(diǎn)精析】通過靈活運(yùn)用兩角和與差的余弦公式和兩角和與差的正弦公式,掌握兩角和與差的余弦公式:;兩角和與差的正弦公式:即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
男 | 女 | |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。
(2)能否在犯錯(cuò)誤的概率不超過百分之一的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具所需成本費(fèi)用為P元,且P=1 000+5x+x2,而每套售出的價(jià)格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問:玩具廠生產(chǎn)多少套時(shí),使得每套所需成本費(fèi)用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤最大,此時(shí)每套價(jià)格為30元,求a,b的值.(利潤=銷售收入-成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選20名女生作為樣本,測量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間, , , 進(jìn)行分組,得到頻率分布直方圖如圖所示,已知樣本中體重在區(qū)間上的女生數(shù)與體重在區(qū)間上的女生數(shù)之比為.
(1)求的值;
(2)從樣本中體重在區(qū)間上的女生中隨機(jī)抽取兩人,求體重在區(qū)間上的女生至少有一人被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年入冬以來,各地霧霾天氣頻發(fā),頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對(duì)機(jī)動(dòng)車更是出臺(tái)了各類限行措施,為分析研究車流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時(shí)間段車流量與的數(shù)據(jù)如下表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | 50 | 51 | 54 | 57 | 58 |
的濃度(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)請(qǐng)根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫出散點(diǎn)圖;
(2)試判斷與是否具有線性關(guān)系,若有請(qǐng)求出關(guān)于的線性回歸方程,若沒有,請(qǐng)說明理由;
(3)若周六同一時(shí)間段的車流量為60萬輛,試根據(jù)(2)得出的結(jié)論,預(yù)報(bào)該時(shí)間段的的濃度(保留整數(shù)).
參考公式: ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=16,F(xiàn)(﹣1,0),M是圓C上的一個(gè)動(dòng)點(diǎn),線段MF的垂直平分線與線段MC相交于點(diǎn)P.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)記點(diǎn)P的軌跡為C1 , A、B是直線x=﹣2上的兩點(diǎn),滿足AF⊥BF,曲線C1與過A,B的兩條切線(異于x=﹣2)交于點(diǎn)Q,求四邊形AQBF面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適;②用相關(guān)指數(shù)可以刻畫回歸的效果,值越小說明模型的擬合效果越好;③比較兩個(gè)模型的擬合效果,可以比較殘差平方和大小,殘差平方和越小的模型擬合效果越好.其中說法正確的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 為參數(shù)).
(1)寫出直線l與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C′,設(shè)曲線C′上任一點(diǎn)為M(x,y),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各棱長都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com