【題目】已知函數(shù)f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.設(shè)a>0,將函數(shù)f(x)的圖象先向右平移a個(gè)單位長(zhǎng)度,再向下平移a2個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象. (Ⅰ)若函數(shù)g(x)有兩個(gè)零點(diǎn)x1 , x2 , 且x1<4<x2 , 求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)連續(xù)函數(shù)在區(qū)間[m,n]上的值域?yàn)閇λ,μ],若有 ,則稱該函數(shù)為“陡峭函數(shù)”.若函數(shù)g(x)在區(qū)間[a,2a]上為“陡峭函數(shù)”,求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)由 ,
即f(x)=x2﹣4x+2,…(1分)
由題設(shè)可知g(x)=(x﹣a)2﹣4(x﹣a)+2﹣a2=x2﹣(2a+4)x+4a+2,
因?yàn)間(x)有兩個(gè)零點(diǎn)x1,x2,且x1<4<x2,
∴g(4)=16﹣4(2a+4)+4a+2<0, ,
又a>0,于是實(shí)數(shù)a的取值范圍為 .
(Ⅱ)由g(x)=x2﹣(2a+4)x+4a+2可知,其對(duì)稱軸為x=a+2,
①當(dāng)0<a≤2時(shí),a+2≥2a,函數(shù)g(x)在區(qū)間[a,2a]上單調(diào)遞減,
最小值λ=g(2a)=﹣4a+2,最大值μ=g(a)=﹣a2+2,
則 ,顯然此時(shí)a不存在,
②當(dāng)2<a≤4時(shí),a<a+2<2a,最小值λ=g(a+2)=﹣a2﹣2,
又 ,最大值μ=g(a)=﹣a2+2,則 , ,又2<a≤4,此時(shí)a亦不存在,
③當(dāng)a>4時(shí),a<a+2<2a,最小值λ=g(a+2)=﹣a2﹣2,
又 ,故最大值μ=g(2a)=﹣4a+2,
則 , ,即 ,
綜上可知,實(shí)數(shù)a的取值范圍為 .
【解析】(Ⅰ)由f(1)=f(3)=﹣1求出b,c值,得到函數(shù)f(x)的解析式,進(jìn)而可得函數(shù)g(x)的解析式,由函數(shù)g(x)有兩個(gè)零點(diǎn)x1,x2,且x1<4<x2,可得g(4)<0,解得實(shí)數(shù)a的取值范圍;(Ⅱ)根據(jù)已知中“陡峭函數(shù)”的定義,結(jié)合二次函數(shù)的圖象和性質(zhì),分類討論,可得滿足條件的實(shí)數(shù)a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣ . (Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)用函數(shù)單調(diào)性的定義證明:f(x)在(0,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知F為拋物線y2=4x的焦點(diǎn),點(diǎn)A,B,C在該拋物線上,其中A,C關(guān)于x軸對(duì)稱(A在第一象限),且直線BC經(jīng)過(guò)點(diǎn)F.
(1)若△ABC的重心為G( ),求直線AB的方程;
(2)設(shè)S△ABO=S1 , S△CFO=S2 , 其中O為坐標(biāo)原點(diǎn),求S12+S22的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a∈R). (Ⅰ)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=x2﹣2x,若對(duì)任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列4個(gè)命題,其中正確的命題是 ①“ ”是“ 不共線”的充要條件;
②已知向量 是空間兩個(gè)向量,若 ,則向量 的夾角為60°;
③拋物線y=﹣x2上的點(diǎn)到直線4x+3y﹣8=0的距離的最小值是 ;
④與兩圓A:(x+5)2+y2=49和圓B:(x﹣5)2+y2=1都外切的圓的圓心P的軌跡方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點(diǎn),PA=AD=1,AB=2.
(1)求證:MN∥平面PAD;
(2)求證:平面PMC⊥平面PCD;
(3)求點(diǎn)D到平面PMC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是邊長(zhǎng)為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是側(cè)棱PA的中點(diǎn).
(1)求證:PC∥平面BDE
(2)求三棱錐P﹣CED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α是第二象限角,且cos(α+π)= .
(1)求tanα的值;
(2)求sin(α﹣ )sin(﹣α﹣π)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的右焦點(diǎn)到直線 的距離為 ,離心率 ,A,B是橢圓上的兩動(dòng)點(diǎn),動(dòng)點(diǎn)P滿足 ,(其中λ為常數(shù)).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)當(dāng)λ=1且直線AB與OP斜率均存在時(shí),求|kAB|+|kOP|的最小值;
(3)若G是線段AB的中點(diǎn),且kOAkOB=kOGkAB , 問(wèn)是否存在常數(shù)λ和平面內(nèi)兩定點(diǎn)M,N,使得動(dòng)點(diǎn)P滿足PM+PN=18,若存在,求出λ的值和定點(diǎn)M,N;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com