1.如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2.
(I)求異面直線AC與B1D所成角的余弦值;
(Ⅱ)設(shè)M是線段B1D上一點,在長方體ABCD-A1B1C1D1內(nèi)隨機選取一點,若該點取自于三棱錐M-ACD內(nèi)的概率為$\frac{1}{18}$,試確定點M的位置.

分析 (Ⅰ)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出異面直線AC與B1D所成角的余弦值.
(Ⅱ)設(shè)M到平面ABCD的距離d,則$\frac{{V}_{M-ADC}}{{V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}}$=$\frac{\frac{1}{3}{S}_{△ADC}•d}{{S}_{四邊形ABCD}•A{A}_{1}}$=$\frac{\frac{1}{6}d}{A{A}_{1}}$=$\frac{1}{18}$,由此能求出結(jié)果.

解答 解:(Ⅰ)以D為原點,DA為x軸,DC為y軸,DD1為z軸,
建立空間直角坐標系,
A(1,0,0),C(0,2,0),B1(1,2,1),
D(0,0,0),
$\overrightarrow{AC}$=(-1,2,0),$\overrightarrow{{B}_{1}D}$=(-1,-2,-1),
設(shè)異面直線AC與B1D所成角為θ,
則cosθ=$\frac{|\overrightarrow{AC}•\overrightarrow{{B}_{1}D}|}{|\overrightarrow{AC}|•|\overrightarrow{{B}_{1}D}|}$=$\frac{|-3|}{\sqrt{5}•\sqrt{6}}$=$\frac{\sqrt{30}}{10}$.
∴異面直線AC與B1D所成角的余弦值為$\frac{\sqrt{30}}{10}$.
(Ⅱ)${V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}$=S四邊形ABCD•AA1
${S}_{△ADC}=\frac{1}{2}$S四邊形ABCD,
設(shè)M到平面ABCD的距離d,
∵M是線段B1D上一點,在長方體ABCD-A1B1C1D1內(nèi)隨機選取一點,
該點取自于三棱錐M-ACD內(nèi)的概率為$\frac{1}{18}$,
∴$\frac{{V}_{M-ADC}}{{V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}}$=$\frac{\frac{1}{3}{S}_{△ADC}•d}{{S}_{四邊形ABCD}•A{A}_{1}}$=$\frac{\frac{1}{6}d}{A{A}_{1}}$=$\frac{1}{18}$,
解得d=$\frac{A{A}_{1}}{3}$=$\frac{1}{3}$.
設(shè)M(a,b,c),$\overrightarrow{DM}$=$λ\overrightarrow{D{B}_{1}}$,則(a,b,c)=(λ,2λ,λ),
∴a=λ,b=2λ,c=λ,
∵d=$\frac{1}{3}$,∴c=λ=$\frac{1}{3}$,∴M($\frac{1}{3},\frac{2}{3},\frac{1}{3}$).

點評 本題考查異面直線所成角的余弦值的求法,考查點的位置的確定,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(-4,4),且在(-4,0]上的圖象如圖所示,則關(guān)于x的不等式f(x)•g(x)<0的解集是(-4,-2)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某工廠打算建造如圖所示的圓柱形容器(不計厚度,長度單位:米),按照設(shè)計要求,該容器的底面半徑為r,高為h,體積為16π立方米,且h≥2r.已知圓柱的側(cè)面部分每平方米建造費用為3千元,圓柱的上、下底面部分每平方米建造費用為a千元,假設(shè)該容器的建造費用僅與其表面積有關(guān),該容器的建造總費用為y千元.
(1)求y關(guān)于r的函數(shù)表達式,并求出函數(shù)的定義域;
(2)問r為多少時,該容器建造總費用最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若tanα<0,則(  )
A.sinα<0B.cosα<0C.sinαcosα<0D.sinα-cosα<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,AB、CD是⊙O的兩條直徑,P是圓周上任一點,作PM⊥AB,PN⊥CD,AH⊥CD,求證:MN=AH.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設(shè)函數(shù)φ(x)=a2x-ax(a>0,a≠1).
(1)求函數(shù)φ(x)在[-2,2]上的最大值;
(2)當a=$\sqrt{2}$時,φ(x)≤t2-2mt+2對所有的x∈[-2,2]及m∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(2-\frac{a}{2})x+2,x≤1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么a的取值范圍是[$\frac{8}{3}$,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若存在非零的實數(shù)a,使得f(x)=f(a-x)對定義域上任意的x恒成立,則函數(shù)f(x)可能是( 。
A.f(x)=x2-2x+1B.f(x)=x2-1C.f(x)=2xD.f(x)=2x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$f(x)=sin(2x+\frac{7π}{4})+cos(2x-\frac{3π}{4})$,x∈R.
(1)求f(x)的最小正周期和單調(diào)增區(qū)間;
(2)已知$cos(β-α)=\frac{4}{5}$,$cos(β+α)=-\frac{4}{5}$,$0<α<β≤\frac{π}{2}$,求f(β).

查看答案和解析>>

同步練習冊答案