分析 (1)利用賦值法,先求出f(0)的值,再令令a=x,b=-x,根據(jù)奇偶性的定義即可判斷,
(2)令x=y=-1,求出f(-1)=6,由f(k-2)<f(2k)-6,轉(zhuǎn)化為f(k-2)<f(2k-1),根據(jù)函數(shù)的單調(diào)性,得到k-2>2k-1解得即可.
解答 解:設(shè)x=y=0:f(0+0)=f(0)+f(0),
即f(0)=0,
再令a=x,b=-x,
則f(x-x)=f(x)+f(-x)=0,
∴f(-x)=-f(x),
∴f(x)為奇函數(shù),
(2)令x=y=-1
則f(-2)=2f(-1)=12
得f(-1)=6,
∵f(k-2)<f(2k)-6=f(2k)-f(-1)=f(2k)+(-f(-1))=f(2k+1),
又f(x)是定義在R上的減函數(shù),
∴k-2>2k+1
解得k<-3,
故k的取值范圍為(-∞,-3)
點(diǎn)評(píng) 本題主要考查了抽象函數(shù)表達(dá)式反映函數(shù)性質(zhì)及抽象函數(shù)表達(dá)式的應(yīng)用,函數(shù)奇偶性的定義及其證明,利用函數(shù)性質(zhì)和函數(shù)的單調(diào)性解不等式的方法,轉(zhuǎn)化化歸的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4($\sqrt{2}$+1)π | B. | 4(2$\sqrt{2}$+1)π | C. | 4$\sqrt{2}$π | D. | 8$\sqrt{2}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<c<b | B. | c<b<a | C. | ${10^a}<{({\frac{1}{3}})^b}$ | D. | $lga<{({\frac{1}{2}})^b}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (0,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8\sqrt{2}-3}{15}$ | B. | $\frac{8\sqrt{2}+3}{15}$ | C. | $\frac{8\sqrt{2}-3}{15}$或$\frac{8\sqrt{2}+3}{15}$ | D. | .以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {4,6} | C. | {2,3,4,6} | D. | {1,2,4,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=(a2x)${\;}^{\frac{1}{2}}$(a>0)與g(x)=ax(a>0) | B. | f(x)=x2+x+1與g(x)=x2+x+(2x-1)0 | ||
C. | f(x)=$\sqrt{x-2}$•$\sqrt{x+2}$與g(x)=$\sqrt{{x}^{2}-4}$ | D. | f(x)=lgx2與g(x)=$\sqrt{{x^2}-4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com