17.一個(gè)底面半徑和高都為2的圓椎的表面積為(  )
A.4($\sqrt{2}$+1)πB.4(2$\sqrt{2}$+1)πC.4$\sqrt{2}$πD.8$\sqrt{2}$π

分析 根據(jù)題意,求出母線長(zhǎng),再求底面積與側(cè)面積的和即可.

解答 解:底面半徑和高都為2的圓錐,其底面積為S底面積=π•22=4π,
母線長(zhǎng)為$\sqrt{{2}^{2}{+2}^{2}}$=2$\sqrt{2}$,
所以它的側(cè)面積為S側(cè)面積=π•2•2$\sqrt{2}$=4$\sqrt{2}$π;
所以圓錐的表面積為:
S=S底面積+S側(cè)面積=4π+4$\sqrt{2}$π=4($\sqrt{2}$+1)π.
故選:A.

點(diǎn)評(píng) 本題考查了求空間幾何體表面積的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在極坐標(biāo)系(ρ,θ)(ρ>0,0<θ<$\frac{π}{2}$)中,曲線ρ=$\sqrt{3}$sinθ與ρ=cosθ的交點(diǎn)的直角坐標(biāo)系坐標(biāo)為($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式ax2+ax+1≥0對(duì)一切x∈R恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.0<a<4B.0≤a<4C.0<a≤4D.0≤a≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,n∈N*,且a1+a2+a3=3,a4+a5+a6=6,則S12=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓(x-1)2+(y+1)2=4關(guān)于直線mx+y-2m=0對(duì)稱,則m的值為(  )
A.1B.-1C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果sin$\frac{x}{2}$•cos$\frac{x}{2}$=$\frac{1}{3}$,那么sin(π-x)的值為(  )
A.$\frac{2}{3}$B.-$\frac{8}{9}$C.$\frac{8}{9}$D.±$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.集合A=$\left\{x\right.\left|{\left.{(x-\frac{1}{2})(x-3)=0}\right\}}\right.,B=\left\{x\right.\left|{\left.{ln({x^2}+ax+a+\frac{9}{4})=0}\right\}}$
(1)若集合B只有一個(gè)元素,求實(shí)數(shù)a的值;
(2)若B是A的真子集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若f(x)是定義在R上的減函數(shù),且對(duì)任意的a、b∈R滿足:f(a+b)=f(a)+f(b).且f(-2)=12
(1)判斷f(x)的奇偶性;
(2)若f(k-2)<f(2k)-6,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)為奇函數(shù),當(dāng)x>0時(shí),$f(x)={x^2}+\frac{1}{x^2}$,則f(-1)=( 。
A.2B.1C.0D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案