4.已知冪函數(shù)y=f(x)的圖象過點($\sqrt{2}$,2),則f(3)=9.

分析 用待定系數(shù)法求出函數(shù)y=f(x)的解析式,再計算f(3)的值.

解答 解:設(shè)冪函數(shù)y=f(x)=xa,a∈R,
函數(shù)圖象過點($\sqrt{2}$,2),
∴${(\sqrt{2})}^{a}$=2,
解得a=2;
∴f(x)=x2,
∴f(3)=32=9.
故答案為:9.

點評 本題考查了冪函數(shù)求解析式以及求函數(shù)值的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=exlnx+2ex
(1)求y=f(x)-exlnx-2ex-$\frac{{e}^{x}}{x}$在x∈[$\frac{1}{2}$,2]上的最值;
(2)已知函數(shù)h(x)=$\frac{f(x)}{x}$-x-1,數(shù)列{an}的通項公式為an=$\frac{1}{n}$,其前n項和為Sn,求證:2×3×4×…×n>${e}^{n-{S}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex,x∈R
(Ⅰ)若直線y=kx與f(x)的反函數(shù)的圖象相切,求實數(shù)k的值
(Ⅱ)設(shè)a,b∈R,且a≠b,A=f($\frac{a+b}{2}$),B=$\frac{f(a)+f(b)}{2}$,C=$\frac{f(a)-f(b)}{a-b}$,試比較A,B,C三者的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)y=x2-3x的定義域為{-1,0,2,3},則其值域為(  )
A.{-2,0,4}B.{-2,0,2,4}C.$\left\{{\left.{y\left|{y≥}\right.-\frac{9}{4}}\right\}}\right.$D.{y|0≤y≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)的定義域為[1,2],則f(x-1)的定義域為( 。
A.[1,2]B.[0,1]C.[2,3]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=logax(a>0且a≠1),且函數(shù)的圖象過點(2,1).
(1)求函數(shù)f(x)的解析式;
(2)若f(m2-m)<1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=3sin(ωx+φ)(|φ|<\frac{π}{2})$的最小正周期為π,且f(x)的圖象經(jīng)過點$(-\frac{π}{6},0)$.則函數(shù)f(x)的圖象的一條對稱軸方程為( 。
A.$x=\frac{5π}{12}$B.$x=-\frac{π}{12}$C.$x=-\frac{5π}{12}$D.$x=\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=20.3,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log2$\frac{2}{3}$,則a、b、c的大小關(guān)系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.i為虛數(shù)單位,則i(1-$\sqrt{3}$i)=( 。
A.$\sqrt{3}$-iB.$\sqrt{3}$+iC.-$\sqrt{3}$-iD.-$\sqrt{3}$+i

查看答案和解析>>

同步練習(xí)冊答案