6.已知函數(shù)y=3cos(2x+φ)的圖象關(guān)于點(diǎn)($\frac{4π}{3}$,0)中心對(duì)稱,則|φ|的最小值為( 。
A.-$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 利用函數(shù)的對(duì)稱中心,求出φ的表達(dá)式,然后確定|φ|的最小值.

解答 解:∵函數(shù)y=3cos(2x+φ)的圖象關(guān)于點(diǎn)($\frac{4π}{3}$,0)中心對(duì)稱,
∴2•$\frac{4π}{3}$+φ=kπ+$\frac{π}{2}$,得φ=kπ-$\frac{13π}{6}$,k∈Z,由此得|φ|min=$\frac{π}{6}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)中余弦函數(shù)的對(duì)稱性,考查計(jì)算能力,對(duì)于k的取值,確定|φ|的最小值,是基本方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)y=|sinx|的最小正周期T=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知x,y∈R,a>1且ax+(a+1)y≥a-y+(a+1)-x,則x與y滿足 (  )
A.x+y≥0B.x+y≤0C.x-y≤0D.x-y≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.f(x)=${9}^{x+\frac{1}{2}}$-3x+a,x∈[1,2]的最大值為5,求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=$\frac{1}{{\sqrt{2-{{log}_2}(1-x)}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-3,+∞)B.$(-∞,\frac{1}{2})$C.(-3,1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)全集U=R,A={x|x<1},B={x|x>m},若∁UA⊆B,則實(shí)數(shù)m的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知p:2x2-3x-2≥0,q:x2-2(a-1)x+a(a-2)≥0,若p是q充分不必要條件,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.2≤|x|+|y|≤3,則x2+y2-2x的取值范圍是( 。
A.[$\frac{\sqrt{2}-2}{2}$,3]B.[$\frac{\sqrt{2}}{2}$,4]C.[-$\frac{1}{2}$,15]D.[$\frac{1}{2}$,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.以橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線方程為$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案